Клеточная мембрана. Функции клеточной мембраны

Универсальная биологическая мембрана образована двойным слоем молекул фосфолипидов общей толщиной 6 мкм. При этом гидрофобные хвосты молекул фосфолипидов обращены внутрь, навстречу друг другу, а полярные гидрофильные головки обращены наружу мембраны, навстречу воде. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. В этот двойной слой липидов встроены белки.

Их подразделяют на интегральные (пронизывают весь бислой липидов), полуинтегральные (проникают до половины ли­пидного бислоя), или поверностные (располагаются на внутренней или наружной поверхности липидного бислоя).

При этом белковые молекулы располагаются в липидном бислое мозаично и могут «плавать» в «липидном море» наподобие айсбергов, благодаря текучести мембран. По своей функции эти белки могут быть структурными (поддерживать определённую структуру мембраны), рецепторными (образовывать рецепторы биологически активных веществ), транспортными (осуществляют транспорт веществ через мембрану) и ферментными (катализируют определённые химические реакции). Эта наиболее признанная в настоящее время жидкостно-мозаичная модель биологической мембраны была предложена в 1972 г. Singer и Nikolson.

Мембраны выполняют в клетке разграничительную функцию. Они разделяют клетку на отсеки, компартменты, в которых процессы и химические реакции могут идти независимо друг от друга. Например, агрессивные гидролитические ферменты лизосом, способные расщеплять большинство органических молекул, отделены от остальной цитоплазмы с помощью мемраны. В случае её разрушения происходит самопереваривание и гибель клетки.

Имея общий план строения, разные биологические мембраны клетки различаются по своему химическому составу, организации и свойствам, в зависимости от функций структур, которые они образуют.

Плазматическая мембрана, строение, функции.

Цитолемма – биологическая мембрана, окружающая клетку снаружи. Это самая толстая (10 нм) и сложно организованная мембрана клетки. В её основе лежит универсальная биологическая мембрана, покрытая снаружи гликокаликсом , а изнутри, со стороны цитоплазмы, подмембранным слоем (рис.2-1Б). Гликокаликс (3-4 нм толщины) представлен наружными, углеводными участками сложных белков – гликопротеинов и гликолипидов, входящих в состав мембраны. Эти углеводные цепочки играют роль рецепторов, обеспечивающих распознавание клеткой соседних клеток и межклеточого вещества и взаимодействие с ними. В этот слой также входят поверхностные и полуинтегральные белки, функциональные участки которых находятся в надмембранной зоне (например, иммуноглобулины). В гликокаликсе находятся рецепторы гистосовместимости, рецепторы многих гормонов и нейромедиаторов.

Подмембранный, кортикальный слой образован микротрубочками, микрофибриллами и сократимыми микрофиламентами, которые являются частью цитоскелета клетки. Подмембранный слой обеспечивает поддержание формы клетки, создание её упругости, обеспечивает изменения клеточной поверхности. За счёт этого клетка участвует в эндо- и экзоцитозе, секреции, движении.

Цитолемма выполняет множество функций :

1) разграничительная (цитолемма отделяет, отграничивает клетку от окружающей среды и обеспечивает её связь с внешней средой);

2) распознавание данной клеткой других клеток и прикрепление к ним;

3) распознавание клеткой межклеточного вещества и прикрепление к его элементам (волокнам, базальной мембране);

4) транспорт веществ и частиц в цитоплазму и из неё;

5) взаимодействие с сигнальными молекулами (гормонами, медиаторами, цитокинами) благодаря наличию на её поверхности специфических рецепторов к ним;

  1. обеспечивает движение клетки (образование псевдоподий) благодаря связи цитолеммы с сократимыми элементами цитоскелета.

В цитолемме расположены многочисленные рецепторы , через которые биологически активные вещества (лиганды, сигнальные молекулы, первые посредники : гормоны, медиаторы, факторы роста) действуют на клетку. Рецепторы представляют собой генетически детерминированные макромолекулярные сенсоры (белки, глико- и липопротеины) встроенные в цитолемму или расположенные внутри клетки и специализированные на восприятии специфических сигналов химической или физической природы. Биологически актив­ные вещества при взаимодействии с рецептором вызывают каскад биохимических изменений в клетке, трансформируясь при этом в конкретный физиологический ответ (изменение функции клетки).

Все рецепторы имеют общий план строения и состоят из трёх частей: 1) надмебранной, осуществляющей взаимодействие с веществом (лигандом); 2) внутримембранной, осуществляющей перенос сигнала и 3) внутриклеточной, погружённой в цитоплазму.

Виды межклеточных контактов.

Цитолемма участвует также в образовании специальных структурмежклеточных соединений, контактов , которые обеспечивают тесное взаимодействие между рядом расположенными клетками. Различают простые и сложные межклеточные соединения. В простых межклеточных соединениях цитолеммы клеток сближаются на расстояние 15-20 нм и молекулы их гликокаликса взаимодействуют друг с другом (рис. 2-3). Иногда выпячивание цитолеммы одной клетки входит в углубление соседней клетки, образуя зубчатые и пальцевидные соединения (соединения «по типу замка»).

Сложные межклеточные соединения бывают нескольких видов: запирающие, сцепляющие и коммуникационные (рис. 2-3). К запирающим соединениям относят плотный контакт или запирающую зону . При этом интегральные белки гликокаликса соседних клеток образуют подобие ячеистой сети по периметру соседних эпителиальных клеток в их апикальных частях. Благодаря этому межклеточные щели запираются, отграничиваются от внешней среды (рис. 2-3).

Рис. 2-3. Различные типы межклеточных соединений.

  1. Простое соединение.
  2. Плотное соединение.
  3. Адгезивный поясок.
  4. Десмосома.
  5. Полудесмосома.
  6. Щелевое (коммуникационное) соединение.
  7. Микроворсинки.

(По Ю. И. Афанасьеву, Н. А. Юриной).

К сцепляющим , заякоревающим соединениям относят адгезивный поясок и десмосомы. Адгезивный поясок располагается вокруг апикальных частей клеток однослойного эпителия. В этой зоне интегральные гликопротеиды гликокаликса соседних клеток взаимодействуют между собой, а к ним со стороны цитоплазмы подходят подмембранные белки, включающие пучки актиновых микрофиламентов. Десмосомы (пятна сцепления) – парные структуры размером около 0,5 мкм. В них гликопротеиды цитолеммы соседних клеток тесно взаимодействуют, а со стороны клеток в этих участках в цитолемму вплетаются пучки промежуточных филаментов цитоскелета клеток (рис. 2-3).

К коммуникационным соединениям относят щелевидные соединения (нексусы) и синапсы . Нексусы имеют размер 0,5-3 мкм. В них цитолеммы соседних клеток сближаются до 2-3 нм и имеют многочисленные ионные каналы. Через них ионы могут переходить из одной клетки в другую, передавая возбуждение, например, между клетками миокарда. Синапсы характерны для нервной ткани и встречаются между нервными клетками, а также между нервными и эффекторными клетками (мышечными, железистыми). Они имеют синаптическую щель, куда при прохождении нервного импульса из пресинаптической части синапса выбрасывается нейромедиатор, передающий нервный импульс на другую клетку (подробнее см. в главе «Нервная ткань»).

Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных « » органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

Что такое клеточная мембрана

Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

История исследования клеточной мембраны

Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

В 1950 году с появлением электронного теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

Свойства и функции клеточной мембраны

Теперь давайте разберем, какие функции выполняет клеточная мембрана:

Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

Матричная функция – именно клеточная мембрана определяет расположение относительно друг друга, регулирует взаимодействие между ними.

Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у , все это благодаря защитной функции мембраны.

Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

  • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
  • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
  • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

Строение клеточной мембраны

В клеточной мембране имеются липиды трех классов:

  • фосфолипиды (представляются собой комбинацию жиров и фосфора),
  • гликолипиды (представляют собой комбинацию жиров и углеводов),
  • холестерол.

Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.

Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.

Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

Клеточная мембрана, видео

И в завершение образовательное видео о клеточной мембране.

Клеточная мембрана — молекулярная структура, которая состоит из липидов и белков. Главные её свойства и функции:

  • отделение содержимого любой клетки от внешней среды, гарантируя её целостность;
  • управление и налаживание обменом между средой и клеткой;
  • внутриклеточные мембраны разбивают клетку на специальные отсеки: органеллы или компартменты.

Слово «мембрана» на латыни означает «пленка». Если говорить о клеточной мембране, то это совокупность двух пленок, которые обладают различными свойствами.

Биологическая мембрана включает в себя три вида белков:

  1. Периферические – расположены на поверхности пленки;
  2. Интегральные – целиком пронизывают мембрану;
  3. Полуинтегральные – одним концом проникают внутрь билипидного слоя.

Какие функции выполняет клеточная мембрана

1. Клеточная стенка — прочная оболочка клетки, которая находится снаружи от цитоплазматической мембраны. Она выполняет защитные, транспортные и структурные функции. Присутствует у многих растений, бактерий, грибов и архей.

2. Обеспечивает барьерную функцию, то есть избирательный, регулируемый, активный и пассивный обмен веществ с внешней средой.

3. Способна передавать и сохранять информации, а также принимает участие в процессе размножения.

4. Выполняет транспортную функцию, которая может через мембрану транспортировать вещества в клетку и из клетки.

5. Клеточная мембрана имеет одностороннюю проводимость. Благодаря этому, молекулы воды могут без задержек проходить через клеточную мембрану, а молекулы прочих веществ проникают выборочно.

6. С помощью клеточной мембраны происходит получение воды, кислорода и питательных веществ, а через неё удаляются продукты клеточного обмена.

7. Выполняет клеточный обмен через мембраны, и может исполнять их с помощью 3 главных типов реакций: пиноцитоз, фагоцитоз, экзоцитоз.

8. Мембрана обеспечивает специфику межклеточных контактов.

9. В мембране присутствуют многочисленные рецепторы, которые способны воспринимать химические сигналы — медиаторы, гормоны и множество других биологических активных веществ. Так она в силах изменить метаболическую активность клетки.

10. Основные свойства и функции клеточной мембраны:

  • Матричная
  • Барьерная
  • Транспортная
  • Энергетическая
  • Механическая
  • Ферментативная
  • Рецепторная
  • Защитная
  • Маркировочная
  • Биопотенциальная

Какую функцию выполняет в клетке плазматическая мембрана?

  1. Отграничивает содержимое клетки;
  2. Осуществляет поступление веществ в клетку;
  3. Обеспечивает удаление ряда веществ из клетки.

Структура мембраны клетки

Клеточные мембраны включают липиды 3 классов:

  • Гликолипиды;
  • Фосфолипиды;
  • Холестерол.

В основном мембрана клетки состоит из белков и липидов, и имеет толщину не более 11 нм. От 40 до 90% всех липидов составляют фосфолипиды. Также важно отметить гликолипиды, которые являются одним из основных компонентов мембраны.

Структура клеточной мембраны трехслойна. В центре располагается однородный жидкий билипидный слой, а белки закрывают его с двух сторон (как мозаику), отчасти проникая в толщу. Также белки необходимы для мембраны, чтобы пропускать внутрь клеток и транспортировать из них наружу особые вещества, которые не могут проникнуть через жировой слой. Например, ионы натрия и калия.

  • Это интересно —

Строение клетки — видео

Клеточная мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофобным «головкам» фосфолипидов, а присоединённые к ним линии - гидрофильным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Жёлто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки , а у животных - межклеточное вещество .
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны , циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • ферментативная - мембранные белки нередко являются ферментами . Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов .
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .
  • маркировка клетки - на мембране есть антигены , действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

См. также

Литература

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. - М .: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - М .: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. - М .: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт . - 3-е издание, исправленное и дополненное. - М .: издательство Московского университета, 2004. -

Биологические мембраны - общее название функционально активных поверхностных структур, ограничивающих клетки (клеточные, или плазматические мембраны) и внутриклеточ­ные органеллы (мембраны митохондрий, ядер, лизосом, эндоплазматического ретикулума и др.). Они содержат в своем со­ставе липиды, белки,гетерогенные молекулы (гликопротеины,гликолипиды)и в зависимости от выполняемой функции много­численные минорные компоненты: коферменты, нуклеиновые кислоты, антиоксиданты, каротиноиды, неорганические ионы и т. п.

Согласованное функционирование мембранных систем – рецепторов, ферментов, транспортных механизмов - помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.

К основным функциям биологических мембран можно отнести:

· отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков);

· контроль и регулирование транспорта огромного многообразия веществ через мембраны;

· участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов;

· преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ.

Молекулярная организация плазматической (клеточной) мембраны у всех клеток примерно одинакова: она состоит из двух слоев липидных молекул с множеством включенных в нее специфических белков. Одни мембранные белки обладают ферментативной активностью, тогда как другие связывают питательные вещества из окружающей среды и обеспечивают их перенос в клетку через мембраны. Мембранные белки различают по характеру связи с мембранными структурами. Одни белки, называемые внешними или периферическими , непрочно связаны с поверхностью мембраны, другие, называемые внутренними или интегральными , погружены внутрь мембраны. Периферические белки легко экстрагируются, тогда как интегральные белки могут быть выделены только при помощи детергенов или органических растворителей. На рис. 4 представлена структура плазматической мембраны.

Внешние, или плазматические, мембраны многих клеток, а также мембраны внутриклеточных органелл, например, митохондрий, хлоропластов удалось выделить в свободном виде и изучить их молекулярный состав. Во всех мембранах имеются полярные липиды в количестве, составляющем в зависимости от типа мембран от 20 до 80% ее массы, остальное приходится главным образом на долю белков. Так, в плазматических мембранах животных клеток количество белков и липидов, как правило, примерно одинаково; во внутренней митохондриальной мембране содержится около 80% белков и только 20% липидов, а в миелиновых мембранах клеток мозга наоборот, около 80% липидов и только 20% белков.


Рис. 4. Структура плазматической мембраны

Липидная часть мембран представляет собой смесь различного рода полярных липидов. Полярные липиды, к числу которых относятся фосфоглицеролипиды, сфинголипиды, гликолипиды не запасаются в жировых клетках, а встраиваются в клеточные мембраны, причем в строго определенных соотношениях.

Все полярные липиды в мембранах постоянно обновляются в процессе метаболизма, при нормальных условиях в клетке устанавливается динамическое стационарное состояние, при котором скорость синтеза липидов равна скорости их распада.

В мембранах животных клеток присутствуют в основном фосфоглицеролипиды и в меньшей степени сфинголипиды; триацилглицеролы обнаруживаются лишь в следовых количествах. Некоторые мембраны животных клеток, в особенности наружная плазматическая мембрана, содержит значительные количества холестерола и его эфиров (рис.5).

Рис.5. Мембранные липиды

В настоящее время общепринятой моделью строения мембран является жидкостно-мозаичная, предложенная в 1972 году С. Синджером и Дж. Николсоном.

Согласно ей белки можно уподобить айсбергам, плавающим в липидном море. Как уже указывалось выше, существуют 2 типа мембранных белков: интегральные и периферические. Интегральные белки пронизывают мембрану насквозь, они являются амфипатическими молекулами . Периферические белки не пронизывают мембрану и связаны с ней менее прочно. Основной непрерывной частью мембраны, то есть ее матриксом, служит полярный липидный бислой. При обычной для клетки температуре матрикс находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных липидов.

Жидкостно-мозаичная модель предполагает также, что на поверхности расположенных в мембране интегральных белков имеются R-группы аминокислотных остатков (в основном гидрофобные группы, за счет которых белки как бы «растворяются» в центральной гидрофобной части бислоя). В то же время, на поверхности периферических, или внешних белков, имеются в основном гидрофильные R-группы, которые притягиваются к гидрофильным заряженным полярным головкам липидов за счет электростатических сил. Интегральные белки, а к ним относятся ферменты и транспортные белки, обладают активностью только в том случае, если находятся внутри гидрофобной части бислоя, где они приобретают необходимую для проявления активности пространственную конфигурацию (рис.6). Следует еще раз подчеркнуть, что ни между молекулами в бислое, ни между белками и липидами бислоя не образуется ковалентных связей.

Рис.6. Мембранные белки

Мембранные белки могут свободно перемещаться в латериальной плоскости. Периферические белки буквально плавают на поверхности бислойного «моря», а интегральные белки, подобно айсбергам, почти полностью погружены в углеводородный слой.

В большинстве своем мембраны ассиметричны, то есть имеют неравноценные стороны. Эта ассиметричность проявляется в следующем:

· во-первых, в том, что внутренняя и внешняя стороны плазматических мембран бактериальных и животных клеток различаются по составу полярных липидов. Так, например, внутренний липидный слой мембран эритроцитов человека содержит в основном фосфатидилэтаноламин и фосфатидилсерин, а внешний – фосфатидилхолин и сфингомиелин.

· во-вторых, некоторые транспортные системы в мембранах действуют только в одном направлении. Например, в мембранах эритроцитов имеется транспортная система («насос»), перекачивающая ионы Nа + из клетки в окружающую среду, а ионы К + - внутрь клетки за счет энергии, освобождающейся при гидролизе АТФ.

· в-третьих, на внешней поверхности плазматических мембран содержится очень большое число олигосахаридных группировок, представляющих собой головки гликолипидов и олигосахаридные боковые цепи гликопротеинов, тогда как на внутренней поверхности плазматической мембраны олигосахаридных группировок практически нет.

Ассиметричность биологических мембрам сохраняется за счет того, что перенос индивидуальных молекул фосфолипидов с одной стороны липидного бислоя на другую очень затруднен по энергетическим соображениям. Полярная молекула липида способна свободно перемещаться на своей стороне бислоя, но ограничена в возможности перескочить на другую сторону.

Подвижность липидов зависит от относительного содержания и типа присутствующих ненасыщенных жирных кислот. Углеводородная природа жирнокислотных цепей сообщает мембране свойства текучести, подвижности. В присутствии цис-ненасыщенных жирных кислот силы сцепления между цепями слабее, чем в случае одних насыщенных жирных кислот, и липиды сохраняют высокую подвижность и при низкой температуре.

На внешней стороне мембран имеются специфические распознающие участки, функция которых состоит в распознавании определенных молекулярных сигналов. Например, именно посредством мембраны некоторые бактерии воспринимают незначительные изменения концентрации питательного вещества, что стимулирует их движение к источнику пищи; это явление носит название хемотаксиса .

Мембраны различных клеток и внутриклеточных органелл обладают определенной специфичностью, обусловленной их строением, химическим составом и функциями. Выделяют следующие основные группы мембран у эукариотических организмов:

· плазматическая мембрана (наружная клеточная мембрана, плазмалемма),

· ядерная мембрана,

· эндоплазматический ретикулум,

· мембраны аппарата Гольджи, митохондрий, хлорпластов, миелиновых оболочек,

· возбудимые мембраны.

У прокариотических организмов помимо плазматической мембраны существуют внутрицитоплазматические мембранные образования, у гетеротрофных прокариот они называются мезосомами. Последние образуются впячиванием внуть наружной клеточной мембраны и в некоторых случаях сохраняют с ней связь.

Мембрана эритроцитов состоит из белков (50%), липидов (40%) и углеводов (10%). Основная часть углеводов (93%) связана с белками, остальная – с липидами. В мембране липиды расположены асимметрично в отличие от симметричного расположения в мицеллах. Например, кефалин находится преимущественно во внутреннем слое липидов. Такая асимметрия поддерживается, по-видимому, за счет поперечного перемещения фосфолипидов в мембране, осуществляемого с помощью мембранных белков и за счет энергии метаболизма. Во внутреннем слое эритроцитарной мембраны находятся в основном сфингомиелин, фосфатидилэтаноламин, фосфатидилсерин, в наружном слое – фосфатидилхолин. Мембрана эритроцитов содержит интегральный гликопротеин гликофорин , состоящий из 131 аминокислотного остатка и пронизывающий мембрану, и так называемый белок полосы 3, состоящий из 900 аминокислотных остатков. Углеводные компоненты гликофорина выполняют рецепторную функцию для вирусов гриппа, фитогемагглютининов, ряда гормонов. В эритроцитарной мембране обнаружен и другой интегральный белок, содержащий мало углеводов и пронизывающий мембрану. Его называют туннельным белком (компонент а), так как предполагают, что он образует канал для анионов. Периферическим белком, связанным с внутренней стороной эритроцитарной мембраны, является спектрин.

Миелиновые мембраны , окружающие аксоны нейронов, многослойны, в них присутствует большое количество липидов (около 80%, половина из них – фосфолипидов). Белки этих мембран важны для фиксации лежащих друг над другом мембранных солев.

Мембраны хлоропластов . Хлоропласты покрыты двухслойной мембраной. Наружная мембрана имеет некоторое сходство с таковой у митохондрий. Помимо этой поверхностной мембраны в хлоропластах имеется внутренняя мембранная система – ламеллы . Ламеллы образуют или уплощенные пузырьки – тилакоиды, которые, располагаясь друг над другом, собираются в пачки (граны) или формируют мембранную систему стромы (ламеллы стромы). Ламеллы гран и стромы наружной стороне мембраны тилакоидов сосредоточены гидрофильные группировки, галакто- и сульфолипидов. Фитольная часть молекулы хлорофилла погружена в глобулу и находится в контакте в гидрофобными группами белков и липидов. Порфириновые ядра хлорофилла в основном локализованы между соприкасающимися мембранами тилакоидов гран.

Внутренняя (цитоплазматическая) мембрана бактерий по структуре сходна с внутренними мембранами хлоропластов и митохондрий. В ней локализованы ферменты дыхательной цепи, активного транспорта; ферменты, участвующие в образовании компонентов мембраны. Преобладающим компонентом бактериальных мембран являются белки: соотношение белок/липид (по массе) равно 3:1. Наружная мембрана грамотрицательных бактерий по сравнению с цитоплазматической содержит меньшее количество различных фосфолипидов и белков. Обе мембраны различаются по липидному составу. Во внешней мембране находятся белки, образующие поры для проникновения многих низкомолекулярных веществ. Характерным компонентом наружной мембраны является также специфический липополисахарид. Ряд белков наружной мембраны служит рецепторами для фагов.

Мембрана вирусов. Среди вирусов мембранные структуры характерны для содержащих нуклеокапсид, который состоит из белка и нуклеиновой кислоты. Это «ядро» вирусов окружено мембраной (оболочка). Она также состоит из двойного слоя липидов с включенными в него гликопротеинами, расположенными в основном на поверхности мембраны. У ряда вирусов (микровирусы) в мембраны входит 70-80% всех белков, остальные белки содержатся в нуклеокапсиде.

Таким образом, мембраны клеток представляют собой очень сложные структуры; составляющие их молекулярные комплексы образуют упорядоченную двумерную мозаику, что придает поверхности мембран биологическую специфичность.

Чувства