Катодная защита от коррозии схема. Что такое электрохимическая защита и как выбрать катодную станцию

Электрохимическая защита от коррозии состоит из катодной и дренажной защиты. Катодная защита трубопроводов осуществляется двумя основными методами: применением металлических анодов-протекторов (гальванический протекторный метод) и применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс - с анодным заземлением (электрический метод).

Рис. 1. Принцип работы катодной защиты

Гальваническая протекторная защита от коррозии

Наиболее очевидным способом осуществления электрохимической защиты металлического сооружения, имеющего непосредственный контакт с электролитической средой, является метод гальванической защиты, в основу которого положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Таким образом, если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом-протектором и будет разрушаться, защищая металл с менее отрицательным потенциалом. Протекторы, по существу, служат портативными источниками электроэнергии.

В качестве основных материалов для изготовления протекторов используются магний, алюминий и цинк. Из сопоставления свойств магния, алюминия и цинка видно, что из рассматриваемых элементов магний обладает наибольшей электродвижущей силой. В то же время одной из наиболее важных практических характеристик протекторов является коэффициент полезного действия, показывающий долю массы протектора, использованной на получение полезной электрической энергии в цепи. К.П.Д. протекторов, изготовленных из магния и магниевых сплавов, редко превышают 50 % в, в отличие от протекторов на основе Zn и Al с К.П.Д. 90 % и более.

Рис. 2. Примеры магниевых протекторов

Обычно протекторные установки применяются для катодной защиты трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями, отдельных участков трубопроводов, а также резервуаров, стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай, и других сосредоточенных объектов.

В то же время протекторные установки очень чувствительны к ошибкам в их размещении и комплектации. Неправильный выбор или размещение протекторных установок приводит к резкому снижению их эффективности.

Катодная защита от коррозии

Наиболее распространенный метод электрохимической защиты от коррозии подземных металлических сооружений - это катодная защита, осуществляемая путем катодной поляризации защищаемой металлической поверхности. На практике это реализуется путем подключения защищаемого трубопровода к отрицательному полюсу внешнего источника постоянного тока, называемого станцией катодной защиты. Положительный полюс источника соединяют кабелем с внешним дополнительным электродом, сделанным из металла, графита или проводящей резины. Этот внешний электрод размещается в той же коррозионной среде, что и защищаемый объект, в случае подземных промысловых трубопроводов, в почве. Таким образом, образуется замкнутая электрическая цепь: дополнительный внешний электрод - почвенный электролит - трубопровод - катодный кабель - источник постоянного тока - анодный кабель. В составе данной электрической цепи трубопровод является катодом, а дополнительный внешний электрод, присоединенный к положительному полюсу источника постоянного тока, становится анодом. Данный электрод называется анодным заземлением. Отрицательно заряженный полюс источника тока, присоединенный к трубопроводу, при наличии внешнего анодного заземления катодно поляризует трубопровод, при этом потенциал анодных и катодных участков практически выравнивается.

Таким образом, система катодной защиты состоит из защищаемого сооружения, источника постоянного тока (станции катодной защиты), анодного заземления, соединительных анодной и катодной линий, окружающей их электропроводной среды (почвы), а также элементов системы мониторинга - контрольно-измерительных пунктов.

Дренажная защита от коррозии

Дренажная защита трубопроводов от коррозии блуждающими токами осуществляется путем направленного отвода этих токов к источнику или в землю. Установка дренажной защиты может быть нескольких видов: земляной, прямой, поляризованный и усиленный дренажи.

Рис. 3. Станция дренажной защиты

Земляной дренаж осуществляется заземлением трубопроводов дополнительными электродами в местах их анодных зон, прямой дренаж - созданием электрической перемычки между трубопроводом и отрицательным полюсом источника блуждающих токов, например рельсовой сетью электрифицированной железной дороги. Поляризованный дренаж в отличие от прямого обладает только односторонней проводимостью, поэтому при появлении положительного потенциала на рельсах дренаж автоматически отключается. В усиленном дренаже дополнительно в цепь включается преобразователь тока, позволяющий увеличивать дренажный ток.

Cтраница 1


Катодная защита газопровода должна действовать бесперебойно. Для каждой СКЗ устанавливается определенный режим в зависимости от условий ее работы. При эксплуатации катодной станции ведется журнал электрических параметров ее и работы источника тока. Необходим также постоянный контроль за анодным заземлением, состояние которого определяется по величине тока СКЗ.  


Характеристика состояния защитного покрытия и его проводимости.  

Катодная защита газопровода должна действовать бесперебойно. На участках трассы с перерывами подачи электроэнергии в течение нескольких часов в сутки применяют аккумуляторы, осуществляющие защиту в период отключения электроэнергии. Емкость аккумуляторной батареи определяют по величине защитного тока СКЗ.  


Катодная защита газопроводов от воздействия блуждающих токов или грунтовой коррозии осуществляется при помощи постоянного электрического тока внешнего источника. Отрицательный полюс источника тока присоединяется к защищаемому газопроводу, а положительный к специальному заземлению - аноду.  


Катодная защита газопроводов от коррозии осуществляется за счет их катодной поляризации с помощью тока внешнего источника.  

Влияние катодной защиты газопроводов на рельсовые цепп железных дорог.  

При катодной защите газопровода применяют стандартные приборы электротехнических установок и специальные коррозионно-измерительные и вспомогательные приборы. Для измерения разности потенциалов подземное сооружение - земля, являющейся одним из критериев оценки опасности коррозии и наличия защиты, применяют вольтметры с большой величиной внутреннего сопротивления на 1 в шкалы, чтобы включение их в измерительную цепь не нарушало в последней распределения потенциалов. Это требование обусловливается как высоким внутренним сопротивлением системы подземное сооружение - земля, так и трудностью создания малого сопротивления заземления в месте контакта измерительного электрода с землей, особенно при использовании неполяризующихся электродов. Для получения измерительной схемы с высоким входным сопротивлением пользуются потенциометрами и высокоомными вольтметрами.  

Для станций катодной защиты газопроводов как источника электроэнергии рекомендуется применение высокотемпературных топливных элементов с керамическим электродом. Такие топливные элементы могут длительное время работать на трассе газопровода, питая электроэнергией станции катодной защиты, а также дома линейных ремонтеров, сигнальные системы и автоматику управления крапами. Этот метод электроснабжения линейных сооружений и установок на газопроводе, которые не требуют большой мощности, значительно упрощает эксплуатационное обслуживание.  

Очень часто параметры катодной защиты газопроводов, полученные расчетным путем, значительно отличаются от параметров СКЗ, полученных на практике путем измерений. Это связано с невозможностью учета всего многообразия факторов, влияющих в природных условиях на параметры защиты.  

Коррозия подземных трубопроводов и защита от нее

Коррозия подземных трубопроводов является одной из основных причин их разгерметизации вследствие образования каверн, трещин и разрывов. Коррозия металлов, т.е. их окисление — это переход атомов металла из свободного состояния в химически связанное, ионное. При этом атомы металла теряют свои электроны, а окислители их принимают. На подземном трубопроводе за счет неоднородности металла трубы и из-за неоднородности грунта (как по физическим свойствам, таки по химическому составу) возникают участки с различным электродным потенциалом, что обуславливает образование гальванических коррозионных. Важнейшими видами коррозии являются: поверхностная (сплошная по всей поверхности), местная в виде раковин, язвенная, щелевая и усталостное коррозионное растрескивание. Два последних вида коррозии представляют наибольшую опасность для подземных трубопроводов. Поверхностная коррозия лишь в редких случаях приводит к повреждениям, тогда как по причине язвенной коррозии происходит наибольшее число повреждений. Коррозионная ситуация, в которой находится металлический трубопровод в грунте, зависит от большого количества факторов, связанных с грунтовыми и климатическими условиями, особенностями трассы, условиями эксплуатации. К таким факторам относятся:

  • влажность грунта,
  • химический состав грунта,
  • кислотность грунтового электролита,
  • структура грунта,
  • температура транспортируемого газа

Наиболее сильным отрицательным проявлением блуждающих токов в земле, вызываемое электрифицированным рельсовым транспортом постоянного тока, является электрокоррозионное разрушение трубопроводов. Интенсивность блуждающих токов и их влияние на подземные трубопроводы зависит от таких факторов, как:

  • переходное сопротивление рельс-земля;
  • продольное сопротивление ходовых рельсов;
  • расстояние между тяговыми подстанциями;
  • потребление тока электропоездами;
  • число и сечение отсасывающих линий;
  • удельное электрическое сопротивление грунта;
  • расстояние и расположение трубопровода относительно пути;
  • переходное и продольное сопротивление трубопровода.

Следует отметить, что блуждающие токи в катодных зонах оказывают защитное воздействие на сооружение, поэтому в таких местах катодная защита трубопровода может быть осуществлена без больших капитальных затрат.

Методы защиты подземных металлических трубопроводов от коррозии подразделяются на пассивные и активные.

Пассивный метод защиты от коррозии предполагает создание непроницаемого барьера между металлом трубопровода и окружающим его грунтом. Это достигается нанесением на трубу специальных защитных покрытий (битум, каменноугольный пек, полимерные ленты, эпоксидные смолы и пр).

На практике не удается добиться полной cплошности изоляционного покрытия. Различные виды покрытия имеют различную диффузионную проницаемость и поэтому обеспечивают различную изоляцию трубы от окружающей среды. В процессе строительства и эксплуатации в изоляционном покрытии возникают трещины, задиры, вмятины и другие дефекты. Наиболее опасными являются сквозные повреждения защитного покрытия, где, практически, и протекает грунтовая коррозия.

Так как пассивным методом не удается осуществить полную защиту трубопровода от коррозии, одновременно применяется активная защита, связанная с управлением электрохимическими процессами, протекающими на границе металла трубы и грунтового электролита. Такая защита носит название комплексной защиты.

Активный метод защиты от коррозии осуществляется путем катодной поляризации и основан на снижении скорости растворения металла по мере смещения его потенциала коррозии в область более отрицательных значений, чем естественный потенциал. Опытным путем установили, что величина потенциала катодной защиты стали составляет минус 0,85 Вольт относительно медносульфатного электрода сравнения. Так как естественный потенциал стали в грунте примерно равен -0,55…-0,6 Вольта, то для осуществления катодной защиты необходимо сместить потенциал коррозии на 0,25…0,30 Вольта в отрицательную сторону.

Прилагая между поверхностью металла трубы и грунтом электрический ток, необходимо достигнуть снижения потенциала в дефектных местах изоляции трубы до значения ниже критерия защитного потенциала, равного - 0,9 В. В результате этого скорость коррозии значительно снижается.

2. Установки катодной защиты
Катодную защиту трубопроводов можно осуществить двумя методами:

  • применением магниевых жертвенных анодов-протекторов (гальванический метод);
  • применением внешних источников постоянного тока, минус которых соединяется с трубой, а плюс — с анодным заземлением (электрический метод).

В основу гальванического метода положен тот факт, что различные металлы в электролите имеют различные электродные потенциалы. Если образовать гальванопару из двух металлов и поместить их в электролит, то металл с более отрицательным потенциалом станет анодом и будет разрушаться, защищая, тем самым, металл с менее отрицательным потенциалом. На практике в качестве жертвенных гальванических анодов используются протекторы из магниевых, алюминиевых и цинковых сплавов.

Применение катодной защиты с помощью протекторов эффективно только в низкоомных грунтах (до 50 Ом-м). В высокоомных грунтах такой метод необходимой защищенности не обеспечивает. Катодная защита внешними источниками тока более сложная и трудоемкая, но она мало зависит от удельного сопротивления грунта и имеет неограниченный энергетический ресурс.

В качестве источников постоянного тока, как правило, используются преобразователи различной конструкции, питающиеся от сети переменного тока. Преобразователи позволяют регулировать защитный ток в широких пределах, обеспечивая защиту трубопровода в любых условиях.

В качестве источников питания установок катодной защиты используются воздушные линии 0,4; 6; 10 кВ. Защитный ток, накладываемый на трубопровод от преобразователя и создающий разность потенциалов «труба-земля», распределяется неравномерно по длине трубопровода. Поэтому максимальное по абсолютной величине значение этой разности находится в точке подключения источника тока (точке дренажа). По мере удаления от этой точки разность потенциалов «труба-земля» уменьшается. Чрезмерное завышение разности потенциалов отрицательно влияет на адгезию покрытия и может вызвать наводораживание металла трубы, что может стать причиной водородного растрескивания. Катодная защита является одним из методов борьбы с коррозией металлов в агрессивных химических средах. Она основана на переводе металла из активного состояния в пассивное и поддержании этого состояния при помощи внешнего катодного тока. Для защиты подземных трубопроводов от коррозии по трассе их залегания сооружаются станции катодной защиты (СКЗ). В состав СКЗ входят источник постоянного тока (защитная установка), анодное заземление, контрольно-измерительный пункт, соединительные провода и кабели. В зависимости от условий защитные установки могут питаться от сети переменного тока 0,4; 6 или 10кВ или от автономных источников. При защите многониточных трубопроводов, проложенных в одном коридоре, может быть смонтировано несколько установок и сооружено несколько анодных заземлений. Однако, учитывая то, что при перерывах в работе системы защиты, из-за разности естественных потенциалов соединенных глухой перемычкой труб, образуются мощные гальванопары, приводящие к интенсивной коррозии, соединение труб с установкой должно осуществляться через специальные блоки совместной защиты. Эти блоки не только разъединяют трубы между собой, но и позволяют устанавливать оптимальный потенциал на каждой трубе. В качестве источников постоянного тока для катодной защиты на СКЗ в основном используются преобразователи, которые питаются от сети 220 В промышленной частоты. Регулировка выходного напряжения преобразователя осуществляется вручную, путем переключения отводов обмотки трансформатора, или автоматически, с помощью управляемых вентилей (тиристоров). Если установки катодной защиты работают в условиях, изменяющихся во времени, которые могут обусловливаться воздействием блуждающих токов, изменением удельного сопротивления грунта или другими факторами, то целесообразно предусматривать преобразователи с автоматическим регулированием выходного напряжения. Автоматическое регулирование может осуществляться по потенциалу защищаемого сооружения (преобразователи потенциостаты) или по току защиты (преобразователи гальваностаты).

3. Установки дренажной защиты

Электрический дренаж является наиболее простым, не требующим источника тока видом активной защиты, так как трубопровод электрически соединяется с тяговыми рельсами источника блуждающих токов. Источником защитного тока является разность потенциалов трубопровод-рельс, возникающая в результате работы электрифицированного железнодорожного транспорта и наличия поля блуждающих токов. Протекание дренажного тока создает требуемое смещение потенциала на подземном трубопроводе. Как правило, в качестве защитного устройства используется плавкие предохранители, однако находят применение и автоматические выключатели максимальной нагрузки с возвратом, то есть восстанавливающие цепь дренажа после спадания опасного для элементов установки тока. В качестве поляризованного элемента используются вентильные блоки, собранные из нескольких, соединенных параллельно лавинных кремниевых диодов. Регулирование тока в цепи дренажа осуществляется изменением сопротивления в этой цепи путем переключения активных резисторов. Если применение поляризованных электродренажей неэффективно, то используется усиленные (форсированные) электродренажи, представляющие собой установку катодной защиты, в качестве анодного заземлителя которой используются рельсы электрифицированной железной дороги. Ток форсированного дренажа, работающего в режиме катодной защиты, не должен превышать 100А, и применение его не должно приводить к появлению положительных потенциалов рельсов относительно земли, чтобы исключить коррозию рельсов и рельсовых скреплений, а также присоединенных к ним конструкций.

Электродренажную защиту допускается подключать к рельсовой сети непосредственно лишь к средним точкам путевых дроссель-трансформаторов через два на третий дроссельный пункт. Более частое подключение допускается, если в цепи дренажа включено специальное защитное устройство. В качестве такого устройства может быть использован дроссель, полное входное сопротивление которого сигнальному току системы СЦБ магистральных железных дорог частотой 50 Гц составляет не менее 5 Ом.

4. Установки гальванической защиты

Установки гальванической защиты (протекторные установки) применяются для катодной защиты подземных металлических сооружений в тех случаях, когда применение установок, питающихся от внешних источников тока, экономически не целесообразно: отсутствие линий электропитания, небольшая протяженность объекта и т.п.

Обычно протекторные установки применяются для катодной защиты следующих подземных сооружений:

  • резервуаров и трубопроводов, не имеющих электрических контактов со смежными протяженными коммуникациями;
  • отдельных участков трубопроводов, которые не обеспечиваются достаточным уровнем защиты от преобразователей;
  • участков трубопроводов, электрически отсеченных от магистрали изолирующими соединениями;
  • стальных защитных кожухов (патронов), подземных резервуаров и емкостей, стальных опор и свай и других сосредоточенных объектов;
  • линейной части строящихся магистральных трубопроводов до введения в строй установок постоянной катодной защиты.

Достаточно эффективную защиту протекторными установками можно осуществить в грунтах с удельным электросопротивлением не более 50 Ом.

5. Установки с протяженными или распределенными анодами.

Как уже отмечалось, при применении традиционной схемы катодной защиты распределение защитного потенциала вдоль трубопровода неравномерно. Неравномерность распределения защитного потенциала приводит как к избыточной защите вблизи точки дренажа, т.е. к не-производительному расходу электроэнергии, так и к уменьшению защитной зоны установки. Этого недостатка можно избежать используя схему с протяженными или распределенными анодами. Технологическая схема ЭХЗ с распределенными анодами позволяет увеличить длину защитной зоны по сравнению со схемой катодной защиты с сосредоточенными анодами, а также обеспечивает более равномерное распределение защитного потенциала. При применении технологической схемы ЗХЗ с распределенными анодами могут использоваться различные схемы размещения анодных заземлений. Наиболее простой является схема с анодными заземлениями, равномерно установленными вдоль газопровода. Регулировка защитного потенциала осуществляется путем изменения тока анодного заземления при помощи регулировочного сопротивления или любого другого устройства, обеспечивающего изменение тока в необходимых пределах. В случае выполнения заземлений из нескольких заземлителей регулировка защитного тока может осуществляться за счет изменения числа включенных заземлителей. В общем случае заземлители, ближайшие к преобразователю, должны иметь более высокое переходное сопротивление. Протекторная защита Электрохимическая защита при помощи протекторов основана на том, что за счет разности потенциалов протектора и защищаемого металла в среде, представляющей собой электролит, происходит восстановление металла и растворение тела протектора. Поскольку основная масса металлических конструкций в мире делается из железа, в качестве протектора могут использоваться металлы с более отрицательным, чем у железа, электродным потенциалом. Их три — цинк, алюминий и магний. Основное отличие магниевых протекторов — наибольшая разность потенциалов магния и стали, благотворно влияющая на радиус защитного действия, который составляет от 10 до 200 м, что позволяет использовать меньшее количество магниевых протекторов, чем цинковых и алюминиевых. Кроме того, у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи. Эта особенность определяет основное применение магниевых протекторов для защиты подземных трубопроводов в грунтах с высоким удельным сопротивлением

При укладке в траншею изолированного трубопровода и его последующей засыпке изоляционное покрытие может быть повреждено, а в процессе эксплуатации трубопровода оно постепенно стареет (теряет свои диэлектрические свойства, водоустойчивость, адгезию). Поэтому при всех способах прокладки, кроме надземной, трубопроводы подлежат комплексной защите от коррозии защитными покрытиями и средствами электрохимической защиты (ЭХЗ) независимо от коррозионной активности грунта.

К средствам ЭХЗ относятся катодная, протекторная и электродренажная защиты.

Защита от почвенной коррозии осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рисунке.

Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью соединительного провода 4 подключен к защищаемому трубопроводу 6, а положительным — к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принципиальная схема катодной защиты

1 — ЛЭП; 2 — трансформаторный пункт; 3 — станция катодной защиты; 4 — соединительный провод; 5 — анодное заземление; 6 — трубопровод

Принцип действия катодной защиты следующий. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление — источник тока— защищаемое сооружение». Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т.е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся в глубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т.е. создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

Подземные коммуникации нефтебаз защищают катодными установками с различными типами анодных заземлений. Необходимая сила защитного тока катодной установки определяется по формуле

J др =j 3 ·F 3 ·K 0

где j 3 — необходимая величина защитной плотности тока; F 3 — суммарная поверхность контакта подземных сооружений с грунтом; К 0 — коэффициент оголенности коммуникаций, величина которого определяется в зависимости от переходного сопротивления изоляционного покрытия R nep и удельного электросопротивления грунта р г по графику, приведенному на рисунке ниже.

Необходимая величина защитной плотности тока выбирается в зависимости от характеристики грунтов площадки нефтебазы в соответствии с таблицей ниже.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента.

Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводом 3. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Зависимость коэффициентов оголенности подземных трубопроводов от переходного сопротивления изоляционного покрытия для грунтов удельным сопротивлением, Ом-м

1 — 100; 2 — 50; 3 — 30; 4 — 10; 5 — 5

Зависимость защитной плотности тока от характеристики грунтов

Принципиальная схема протекторной защиты

1 — трубопровод; 2 — протектор; 3 — соединительный провод; 4 — контрольно-измерительная колонка

Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.

Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее железа, так как они более электроотрицательны. Практически же протекторы изготавливаются только из материалов, удовлетворяющих следующим требованиям:

  • разность потенциалов материала протектора и железа (стали) должна быть как можно больше;
  • ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;
  • отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.

Данным требованиям в наибольшей степени удовлетворяют сплавы на основе магния, цинка и алюминия.

Протекторную защиту осуществляют сосредоточенными и протяженными протекторами. В первом случае удельное электросопротивление грунта должно быть не более 50 Ом-м, во втором — не более 500 Ом·м.

Электродренажная защита трубопроводов

Метод защиты трубопроводов от разрушения блуждающими токами, предусматривающий их отвод (дренаж) с защищаемого сооружения на сооружение — источник блуждающих токов либо специальное заземление, называется электродренажной защитой.

Применяют прямой, поляризованный и усиленный дренажи.

Принципиальные схемы электродренажной защиты

а — прямой дренаж; б —поляризованный дренаж; в — усиленный дренаж

Прямой электрический дренаж — это дренажное устройство двусторонней проводимости. Схема прямого электрического дренажа включает: реостат К, рубильник К, плавкий предохранитель Пр и сигнальное реле С. Сила тока в цепи «трубопровод — рельс* регулируется реостатом. Если величина тока превысит допустимую величину, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого включается звуковой или световой сигнал.

Прямой электрический дренаж применяется в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

Поляризованный электрический дренаж — это дренажное устройство, обладающее односторонней проводимостью. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости (вентильный элемент) ВЭ. При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

Усиленный дренаж применяется в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным — не к анодному заземлению, а к рельсам электрифицированного транспорта.

За счет такой схемы подключения обеспечивается: вопервых, поляризованный дренаж (за счет работы вентильных элементов в схеме СКЗ), а во-вторых, катодная станция удерживает необходимый защитный потенциал трубопровода.

После ввода трубопровода в эксплуатацию производится регулировка параметров работы системы их защиты от коррозии. При необходимости с учетом фактического положения дел могут вводиться в эксплуатацию дополнительные станции катодной и дренажной защиты, а также протекторные установки.

Пассивная защита подземных газопроводов изолиру-ющими покрытиями дополняется электрической защитой. Задачи электрической защиты следующие.

  1. Отвод блуждающих электрических токов с защищаемого газо-провода и организованный возврат их к электрическим установкам и сетям постоянного тока, являющимся источником этих токов.
  2. Подавление протекающих по газопроводу токов в местах их вы-хода в землю (анодные зоны) токами от внешнего источника, а также токов, возникающих за счет почвенной электрохимической коррозии, созданием гальванической цепи и защитного электрического потен-циала на трубах газопровода.
  3. Предотвращение распространения электрических токов по газопроводам путем секционирования последних изолирующими фланцами.

Задача отвода блуждающих токов может быть решена путем создания:

  1. дополнительных заземлений для отвода токов в землю. Недо-статок — возможность вредного влияния на соседние трубопроводы токов, стекающих с защищаемого газопровода;
  2. простой или прямой дренажной защиты, т.е. электрического соединения защищаемого газопровода с рельсами трамвая или элек-трической железной дороги с целью возврата через них токов к их источнику. Простой дренаж имеет двустороннюю проводимость, т.е. может пропускать ток туда и обратно, и поэтому применяется в устойчивых анодных зонах. Недостатком этой защиты является не-обходимость выключения дренажа, если изменилась полярность тока или если потенциал на газопроводе стал меньшим, чем на рельсах;
  3. поляризованной дренажной защиты, т.е. дренажа с односто-ронней проводимостью, исключающей обратное течение тока от рельсов к защищаемому газопроводу;
  4. усиленной дренажной защиты, т.е. такой защиты, в цепь кото-рой для повышения эффективности включен внешний источник тока. Таким образом, усиленный дренаж — это объединение поля-ризованного дренажа с катодной защитой.

Задача подавления токов, протекающих по защищаемому газо-проводу, может быть решена с помощью:

  1. Катодной защиты внешним током (электрозащита), т.е. при-соединением защищаемого газопровода к внешнему источнику тока — к его отрицательному полюсу в качестве катода. Положитель-ный полюс источника тока присоединяется к заземлению — аноду. Создается замкнутая цепь, в которой ток течет от анода через землю к защищаемому газопроводу и далее к отрицательному полюсу внешнего источника тока. При этом происходит постепенное разрушение анодных зазем-лений, но обеспечивается защита газопровода за счет его катодной поляризации и предотвращения стекания токов с труб в землю. В ка-честве внешнего источника могут применяться станции катодной защиты(СКЗ);
  2. Протекторной защиты, т.е. защиты путем использования в электрической цепи протекторов из металлов, обладающих в кор-розионной среде более отрицательным потенциалом, чем металл трубопровода. Электрический ток возникает в системе протекторной защиты, так же как в гальваническом элементе, причем электроли-том служит грунт, содержащий влагу, а электродами являются газопровод и металл протектора. Возникающий защитный ток подавля-ет токи электрохимической коррозии и обеспечивает создание за-щитного электрического потенциала на газопроводе.

Принципиальная схема катодной защиты подземного газопровода

1 — анодное заземление; 2,4 — дренажные кабели; 3 — внешний источник электри-ческого тока; 5 — точка при-соединения дренажного кабеля; 6 — защищаемый газопровод

Принципиальная схема протекторной защиты подземного газопровода

1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора

Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолито-выми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.

Устройство изолирующих фланцев

1— изолирующая текстолитовая или паронитовая втулка; 2— изолирующая шайба из текстолита, резины или хлорвинила; 3 — стальная шайба; 4 — свинцовые шайбы; 5— текстолитовое кольцо-прокладка

Основными факторами, характеризующими степень коррозион-ного воздействия на подземные стальные газопроводы, являются:

  • величина и направление блуждающих токов в грунте;
  • величина и полярность потенциала газопровода относительно других металлических подземных коммуникаций и рельсов электри-фицированного транспорта;
  • направление и сила токов, протекающих по газопроводу;
  • состояние противокоррозионной защиты газопроводов;
  • величина удельного электрического сопротивления фунта.

Все эти факторы подлежат периодическому контролю.

Периодичность элекфических измерений такова:

  • в районах установок электрозащиты газопроводов и других за-щищаемых сооружений, а также около тяговых подстанций и депо элекфотранспорта, вблизи рельсов фамвая и элекфифицированных железных дорог и в местах пересечений газопроводов с ними — не реже одного раза в 3 месяца, а также при изменениях режимов уста-новок электрозащиты, защищаемых сооружений или источников блуждающих токов;
  • в неопасных с точки зрения электрозащиты участках — не реже одного раза в год в летнее время, а также при всяких изменениях ус-ловий, могущих вызвать электрокоррозию.

Для протекторной защиты применяют протекторы из цветных металлов — обычно магния, цинка, алюминия и их сплавов.

Контроль работы электрозащитных установок и измерение по-тенциалов на контактах производятся (не реже): на дренажных уста-новках — 4 раза в месяц; на катодных установках — 2 раза в месяц; на протекторных установках — 1 раз в месяц.

Бывшие