Центральная симметрия – источник жизни. Wonder Wild World: Симметрия в природе

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Всероссийский к онкурс ученических рефератов «Кругозор»

МОУ «СОШ с. Петропавловка Дергачёвского района

Саратовской области »

РЕФЕРАТ

по математике , биологии, экологии на тему:

«Симметрия в природе»

учащийся 6 класса МОУ

Руководители: Кутищева Нина Семеновна,

Руденко Людмила Викторовна,

Введение

1. Теоретическая часть

1.1.1 Развивающее учение о симметрии

1.1.2 Осевая симметрия фигур

1.1.3 Центральная симметрия

1.1.4 Симметрия относительно плоскости

2. Практическая часть

2.2 Обоснование причины симметрии у растений

Заключение

Литература

симметрия растение геометрия точка

Введение

«Симметрия является той идеей, с помощью

которой человек веками пытается объяснить

и создать порядок, красоту и совершенство» Герман Вейль.

Летом я отдыхал на берегу Волги в замечательном местечке Саратовской области «Чардым». Меня, жителя степного Заволжья, поразило окружавшее буйство зелени, разнообразие растений, и я с интересом рассматривал окружающую меня природу. Я невольно задался вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существуют какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животному миру? Внимательно приглядываясь к окружающей природе, я заметил, что форма листьев всех растений подчиняется строгой закономерности: листок как бы склеен из двух более или менее одинаковых половинок. Тем же свойством обладают и бабочки. Мы их можем мысленно разделить вдоль на две зеркально равные части.

На уроках математики мы рассматривали симметрию на плоскости относительно точки и прямой, фигуры в пространстве, симметричные относительно плоскости. Так вот оно в чём дело! Вот она закономерность, которую я чувствовал в своих наблюдениях, но не мог объяснить! Законы симметрии - вот чем можно объяснить такую похожесть в листьях, цветах, животном мире.

И я задался целью выяснить: существует ли симметрия в царстве растений и чем она обусловлена. Для ее реализации мною были сформулированы следующие задачи:

1. Познакомиться подробнее с геометрическими законами симметрии.

2. Выявить причины, обуславливающие симметрию в природе.

1. Теоретическая часть

1.1 Основные понятия о симметрии и геометрии растений

1.1.1 Развивающееся учение о симметрии

Слово «симметрия» от греческого symmetria -- соразмерность. Именно она позволит охватить самые разнообразные тела с единых геометрических позиций.

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: живой, неживой природы и общества. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Знаменитый академик В.И. Вернадский считал, что «… представление о симметрии слагалось в течение десятков, сотен, тысяч поколений. Правильность его проверена реальным опытом и наблюдением, бытом человечества в разнообразнейших природных условиях.

Понятие «симметрия» выросло на изучении живых организмов и живого вещества, в первую очередь человека. Само понятие, связанное с понятием красоты или гармонии, было дано великими греческими ваятелями, и слово «симметрия» этому явлению отвечающее, приписывается скульптуру Пифагору из Регнума (Южная Италия, тогда Великая Греция), жившему в V веке до нашей эры».

А другой известный академик А.В. Шубников (1887-1970) в предисловии к своей книге «Симметрия» писал: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но и в известной мере и уверенностью человека в большей пригодности для практики правильных форм.

Уверенность эта продолжает существовать и до сих пор, находя свое отражение во многих областях человеческой деятельности: искусстве, науке, технике и т.д.».

Но какое же значение заключено в этом, безусловно, классическом понятии? Существует множество определений симметрии:

1. «Словарь иностранных слов»: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность».

2. «Краткий Оксфордский словарь»: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью».

3. «Словарь С.И. Ожегова»: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра».

4. В.И. Вернадский. «Химическое строение биосферы Земли и ее окружения»: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю.А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях. Другими словами, про симметричную фигуру можно сказать: «Eadem mutate resurgo» - «Измененная, я воскресаю той же самой» - надпись под очаровавшей Якоба Бернулли (1654-1705) логарифмической спиралью».

1.1.2 Осевая симметрия фигур

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА 1 и перпендикулярна к нему.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре.

Рассматривая различные фигуры, мы замечаем, что некоторые из них симметричны относительно оси, т.е. отображаются на себя при симметрии относительно этой оси.

Ось симметрии делит такую фигуру на две симметричные фигуры расположенные в разных полуплоскостях определяемых осью симметрии. (рис. 1.)

Некоторые фигуры имеют несколько осей симметрии. Например круг (рис. 2) симметричен относительно любой прямой проходящей через его центр. Перегибанием чертежа по диаметру начерченного круга можно убедиться в том, что две части круга совпадают. Поэтому любой диаметр лежит на оси симметрии круга.

Отрезок имеет две оси симметрии: он симметричен относительно перпендикулярной к нему прямой, проходящей через его середину, и относительно прямой, на которой этот отрезок лежит (рис. 3).

1.1.3 Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если О - середина отрезка АА 1 .

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

Центральная симметрия как частный вид поворота вокруг заданной точки, обладает всеми свойствами поворота. В частности, при центральной симметрии сохраняются расстояния, поэтому центральная симметрия есть перемещение. Отсюда следует, что если одна из двух фигур отображается на другую центральной симметрией, то эти фигуры равны.

Прямая, проходящая через центр симметрии отображается центральной симметрией на себя.

Для каждой точки плоскости существует единственная ей симметричная точка относительная данного центра; если точка А совпадает с центром симметрии то и симметричная ей точка В совпадает с центром симметрии.

Подобно тому как осевая симметрия однозначно определяется своей осью, так и центральная симметрия однозначно определяется своим центром.

Некоторые фигуры имеют центр симметрии - это значит, что для каждой точки этой фигуры центрально симметричная ей точка также принадлежит этой фигуре. Такие фигуры называют центрально-симметричными. Например, отрезок - центрально симметричная фигура, центром симметрии которой служит его середина; прямая - центрально-симметричная фигура относительно любой ее точки; окружность - центрально-симметричная фигура относительно ее центра; пара вертикальных углов есть центрально-симметричная фигура с центром симметрии в общей вершине углов.

1.1.4 Симметрия относительно плоскости (зеркальная симметрия)

Две точки А и А1 называются симметричными относительно плоскости б, если эта плоскость проходит через середину отрезка АА1 и перпендикулярна к нему (рис. 4).

Размещено на http://www.allbest.ru/

Фигура называется симметричной относительно плоскости б, если для каждой точки фигуры симметричная ей точка относительно плоскости, также принадлежит этой фигуре (рис. 5).

Размещено на http://www.allbest.ru/

В дальнейшем чаще всего мы будем иметь дело с тремя типами элементов симметрии: плоскость, оси, и центр.

Итак, мы познакомились с исчерпывающим перечнем элементов симметрии. В нашем распоряжении имеется полный набор разных элементов симметрии для конечных фигур. Для полной характеристики таких фигур необходимо учитывать совокупности всех элементов симметрии, присутствующих на данном объекте.

1.2 Форма и симметрия растений

С осевой симметрией мы встречаемся не только в геометрии, но и в природе. В биологии принято и правильно говорить не об осевой, а о двусторонней, билатеральной симметрии или зеркальной симметрии пространственного объекта. Двусторонняя симметрия характерна для большинства многоклеточных животных и возникла в связи с активным передвижением. Также двусторонней симметрией обладают насекомые и некоторые растения. К примеру, форма листка не является случайной, она строго закономерна. Он как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга, отражение какого-либо предмета в зеркале и сам предмет. Для того, чтобы убедиться в сказанном, поставим зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листка пополам. Заглянув в зеркальце, мы увидим, что отражение правой половины листка более или менее точно заменяют его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины. Плоскость, разделяющая листок на две зеркально равные части называется плоскостью симметрии. Ботаники называют такую симметрию билатеральной или дважды боковой. Но не только древесный листок обладает такой симметрией. Мысленно можно разрезать на две зеркально равные части обыкновенную гусеницу. Да и нас самих можно разделить на две равные половины. Всё, что растёт и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии. Эта же симметрия сохраняется у организмов, получивших возможность перемещаться. Хоть и без определённой направленности. К таким существам относятся морские звёзды и ежи.

Лучевая симметрия характерна, как правило, для животных, ведущих прикреплённый образ жизни. К таким животным относится гидра. Если вдоль тела гидры провести ось, то её щупальца будут расходиться от этой оси во все стороны, как лучи. Если рассмотреть лепестки ромашки, то можно увидеть, что они имеют тоже плоскость симметрии. Это далеко не всё. Ведь лепестков много и вдоль каждого можно провести плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Этот целый веер или пучок пересекающихся плоскостей симметрии. Сходным образом можно охарактеризовать и геометрию подсолнечника, василька, колокольчика. Такая симметрия, как у ромашек, грибов, ели называется радиально-лучевой. В морской среде такая симметрия не препятствует направленному плаванью животных. Такой симметрией обладает медуза. Выталкивающая из-под себя воду нижними краями тела, похожими по форме на колокол(морские ежи, звёзды). Таким образом, можно сделать вывод всё, что растёт или движется по вертикали вниз или вверх относительно земной поверхности, подчиняется радиально-лучевой симметрии.

Характерная для растений симметрия конуса хорошо видна на примере любого дерева.

Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть внизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления "вверх" и "вниз" для дерева, существенно различны. А направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия. Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных.

Весьма редко тело растения построено одинаково по всем направлениям. По большей части в нем можно различить верхний (передний) и нижний (задний) конец. Линия, соединяющая оба эти конца, именуется продольной осью. По отношению к этой продольной оси органы и ткани растения могут быть распределены различно.

1) Если через продольную ось можно провести не менее двух плоскостей, делящих рассматриваемую часть растения на одинаковые симметричные половины, то расположение именуют лучевым (многосимметрическое расположение). Большинство корней, стеблей и цветов построены по лучевому типу.

2) Если через продольную ось можно провести лишь одну плоскость, делящую растение на симметричные половины, то говорят о дорзивентральном (моносимметрическом) расположении. При отсутствии плоскостей симметрии орган именуют асимметрическим. Наконец, бисимметрическими или билатеральными называют такие органы, у которых можно различить правую и левую, переднюю и заднюю стороны, причем правая симметрична левой, передняя - задней, но правая и передняя, левая и задняя совершенно различны. Таким образом, здесь имеется две неодинаковые плоскости симметрии. Такое расположение получается, например, если цилиндрический орган будет сплющен в одном каком-либо направлении. Так, бисимметричны уплощенные стебли кактусов Opuntia, бисимметрично слоевище многих морских водорослей, таких, как Fucus, Laminaria и проч. Бисимметричные органы образуются обыкновенно из лучевых, что особенно хорошо видно на кактусах или на фукусе. Что касается в частности цветов, то лучевые чаще называются звездчатыми (актиноморфными), а дорзивентральные - зигоморфными.

2. Практическая часть

2.1 Особенности каждого типа симметрии

Два вида симметрии с необычным упорством повторяются вокруг нас. В этом убедился, просматривая фотографии, сделанные во время отдыха.

Меня окружали различные цветы, деревья. Подул ветерок, и листок с дерева упал мне прямо на рукав. Форма его не является случайной, она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок. Одна из этих половинок расположена зеркально относительно другой, совсем так, как располагаются друг относительно друга отражение какого- либо предмета в зеркале и сам предмет. Чтобы убедиться в этом, я поставил карманное зеркальце с прямым краем на линию, идущую вдоль черенка и разделяющую пластинку листа пополам. Заглянув в зеркальце, я увидел, что отражение правой половины листа более или менее точно заменяет его левую половину и, наоборот, левая половина листка в зеркальце как бы перемещается на место правой половины.

Плоскость, разделяющая листок на две зеркально равные части (которая сейчас совпадает с плоскостью зеркала), называется «плоскостью симметрии». Ботаники и зоологи называют такую симметрию билатеральной (в переводе с латинского дважды боковой).

Только ли древесный листок обладает такой симметрией?

Если посмотреть на красавицу бабочку с яркой расцветкой, она тоже состоит из двух одинаковых половинок. Даже пятнистый узор на ее крыльях подчиняется такой геометрии.

И выглянувший из травы жучок, и промелькнувшая мошка, и сорванная ветка, - все подчиняется «билатеральной симметрии». Итак, повсюду в лесу мы наталкиваемся на билатеральную симметрию. Может быть любое существо обладает плоскостью симметрии и следовательно, подходит тем самым под билатеральную симметрию.

На первый взгляд может показаться, что подходит, но не все так просто, как кажется. Возле куста скромно выглядывает из травы обыкновенный поповник (ромашка). Я сорвал его и рассмотрел. Вокруг желтой середки, как лучи вокруг солнышка на детском рисунке, расположены белые лепестки.

Имеет ли такое «цветочное солнышко» плоскость симметрии? Конечно! Без всякого труда можно его разрезать на две зеркально равные половинки по линии, проходящей через центр цветка и продолжающейся воль середины любого из лепестков или между ними. Это, однако, не все. Ведь лепестков-то много, и вдоль каждого лепестка можно обнаружить плоскость симметрии. Значит, этот цветок обладает многими плоскостями симметрии, и все они пересекаются в его центре. Сходным образом, можно охватить и геометрию подсолнечника, василька, колокольчика.

Все то, что растет и движется по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии.

Этому всеобщему закону послушны не только растения, но и животные.

2.2 Обоснование причин симметрии у растений

Мною была проведена исследовательская работа, цель которой выяснить причины, обусловливающие симметрию в царстве растений. В две прозрачные трубки я поместил проростки бобов. Одну трубку расположил в горизонтальном положении, а другую - в вертикальном. Через неделю обнаружил, что, как только корень и стебель выросли за пределы горизонтально расположенной трубки, корень стал расти строго вниз, а стебель вверх. Я считаю, что рост корня вниз обусловлен земным притяжением; рост стебля вверх - влиянием света. Опыты, проводимые космонавтами на борту орбитальной станции в условиях невесомости, показали, что при отсутствии силы тяжести привычная пространственная ориентация у проростков нарушается. Следовательно, в условиях земного притяжения наличие симметрии позволяет растениям занять устойчивое положение.

Вывод: Чаще всего центральная симметрия встречается у цветковых и у голосеменных в листьях. У осевой симметрии наибольшее количество растений - это водоросли (корень и листья), зеленые мхи (корень, стебель, листья), хвощи (корень, стебель, листья), плауны (корень, стебель, листья), папоротники (корень, листья), голосеменные и цветковые. У зеркальной симметрии встречаются такие виды растений, как папоротники (листья), голосеменные (стебель, плоды) и цветковые.

Что же является основной причиной возникновения различной симметрии у растений? Это сила земного притяжения, или сила тяжести.

Изучение геометрии, биологии и физики в старших классах помогут мне более глубоко выяснить причины симметрии в природе, определить тип симметрии у любого растения.

Заключение

Трудно найти человека, который не имел бы какого-либо представления о симметрии, объясняющей наличие определенного порядка, закономерности в расположении частей окружающего мира. В каждом цветочке есть сходство с другими, но есть и различие.

Рассмотрев и изучив вышеизложенное на страницах реферата, я теперь могу утверждать: все, что растет по вертикали, то есть вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии; все то, что растет горизонтально или наклонно по отношению к земной поверхности подчиняется билатеральной симметрии. Так же я на практике доказал, что упорядоченность и пропорциональность растений обусловлена двумя факторами:

Земное притяжение;

Влияние света.

Знание геометрических законов природы имеют огромное практическое значение. Мы должны не только научиться понимать эти законы, но и заставлять служить их на пользу людям.

В своём реферате я больше внимания уделил симметрии живой природы, но это только малая часть, доступная для моего понимания. В дальнейшем я хотел бы изучить мир симметрии более глубоко.

Источники

1. Атанасян Л.С. Геометрия 7-9. М.: Просвещение, 2004. с. 110.

2. Атанасян Л.С. Геометрия 10-11. М.: Просвещение, 2007. с. 68.

3. Вернадский В.И.. Химическое строение биосферы Земли и ее окружения. М., 1965.

4. Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

5. Шубников А.В.. Симметрия. М., 1940.

6. Урманцев Ю.А. Симметрия в природе и природа симметрии. М., Мысль, 1974. с. 230.

7. Шафрановский И.И. Симметрия в природе. 2-е изд., перераб. Л.

8. http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210.

9. http://www.wikiznanie.ru/ru-wz/index.php/.

Размещено на Allbest.ru

...

Подобные документы

    Что такое симметрия, ее виды в геометрии: центральная (относительно точки), осевая (относительно прямой), зеркальная (относительно плоскости). Проявление симметрии в живой и неживой природе. Применение законов симметрии человеком в науке, быту, жизни.

    реферат , добавлен 14.03.2011

    Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.

    реферат , добавлен 25.06.2009

    Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.

    презентация , добавлен 23.09.2013

    Понятие симметрии и особенности ее отражения в различных сферах: геометрии и биологии. Ее разновидности: центральная, осевая, зеркальная и вращения. Специфика и направления исследования симметрии в человеческом теле, природе, архитектуре, быту, физике.

    презентация , добавлен 13.12.2016

    Основные виды симметрии (центральная и осевая). Прямая в качестве оси симметрии фигуры. Примеры фигур, обладающих осевой симметрией. Симметричность относительно точки. Точка как центр симметрии фигуры. Примеры фигур, обладающих центральной симметрией.

    презентация , добавлен 30.10.2014

    Понятие отражательной и вращательной осевых симметрий в евклидовой геометрии и в естественных науках. Примеры осевой симметрии - бабочка, снежинка, Эйфелева башня, дворцы, лист крапивы. Зеркальное отражение, радиальная, аксиальная и лучевая симметрии.

    презентация , добавлен 17.12.2013

    Понятие симметрии в математике, ее виды: поступательная, вращательная, осевая, центральная. Примеры симметрии в биологии. Ее проявления в химии в геометрической конфигурации молекул. Симметрия в искусствах. Простейший пример физической симметрии.

    презентация , добавлен 14.05.2014

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    Понятие и свойства симметрии, ее типы: центральная и осевая, зеркальная и поворотная. Распространенность симметрии в живой природе. Гомотетия (преобразование подобие). Оценка роли и значения данного явления в химии, архитектуре, технических объектах.

    презентация , добавлен 04.12.2013

    Системы обозначения видов симметрии. Правила записи международного символа точечной группы. Теоремы к выбору кристаллографических осей, правила установки. Кристаллографические символы узлов, направлений и граней. Закон рациональности отношения параметров.

На протяжении веков симметрия остается предметом, который очаровывает философов, астрономов, математиков, художников, архитекторов и физиков. Древние греки были совершенно одержимы ею – и даже сегодня мы, как правило, сталкиваемся с симметрией во всем от расположения мебели до стрижки волос.

Просто имейте в виду: как только вы осознаете это, вы, вероятно, испытаете непреодолимое желание искать симметрию во всем, что видите.

(Всего 10 фото)

Спонсор поста: Программа для скачивания музыки ВКонтакте : Новая версия программы «Лови в контакте» предоставляет возможность легко и быстро скачивать музыку и видео, размещенные пользователями, со страниц самой известной социальной сети vkontakte.ru.

1. Брокколи романеско

Возможно увидев брокколи романеско в магазине, вы подумали, что это ещё один образец генномодифицированного продукта. Но на самом деле это ещё один пример фрактальной симметрии природы. Каждое соцветие брокколи имеет рисунок логарифмической спирали. Романеско внешне похожа на брокколи, а по вкусу и консистенции – на цветную капусту. Она богата каротиноидами, а также витаминами С и К, что делает её не только красивой, но и здоровой пищей.

На протяжении тысяч лет люди удивлялись идеальной гексагональной форме сот и спрашивали себя, как пчелы могут инстинктивно создать форму, которую люди могут воспроизвести только с помощью циркуля и линейки. Как и почему пчелы имеют страстное желание создавать шестиугольники? Математики считают, что это идеальная форма, которая позволяет им хранить максимально возможное количество меда, используя минимальное количество воска. В любом случае, все это продукт природы, и это чертовски впечатляет.

3. Подсолнухи

Подсолнухи могут похвастаться радиальной симметрией и интересным типом симметрии, известной как последовательность Фибоначчи. Последовательность Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 и т.д. (каждое число определяется суммой двух предыдущих чисел). Если бы мы не спешили и подсчитали количество семян в подсолнухе, то мы бы обнаружили, что количество спиралей растет по принципам последовательности Фибоначчи. В природе есть очень много растений (в том числе и брокколи романеско), лепестки, семена и листья которых отвечают этой последовательности, поэтому так трудно найти клевер с четырьмя листочками.

Но почему подсолнечник и другие растения соблюдают математические правила? Как и шестиугольники в улье, все это – вопрос эффективности.

4. Раковина Наутилуса

Помимо растений, некоторые животные, например Наутилус, отвечают последовательности Фибоначчи. Раковина Наутилуса закручивается в «спираль Фибоначчи». Раковина пытается поддерживать одну и ту же пропорциональную форму, что позволяет ей сохранять её на протяжении всей жизни (в отличие от людей, которые меняют пропорции на протяжении жизни). Не все Наутилусы имеют раковину, выстроенную по правилам Фибоначчи, но все они отвечают логарифмической спирали.

Прежде, чем вы позавидуете моллюскам-математикам, вспомните, что они не делают этого специально, просто такая форма наиболее рациональна для них.

5. Животные

Большинство животных имеют двустороннюю симметрию, что означает, что они могут быть разделены на две одинаковых половинки. Даже люди обладают двусторонней симметрией, и некоторые ученые полагают, что симметрия человека является наиболее важным фактором, который влияет на восприятие нашей красоты. Другими словами, если у вас однобокое лицо, то остается надеяться, что это компенсируется другими хорошими качествами.

Некоторые доходят до полной симметрии в стремлении привлечь партнера, например павлин. Дарвин был положительно раздражен этой птицей, и написал в письме, что «Вид перьев в хвосте павлина, всякий раз, когда я смотрю на него, делает меня больным!» Дарвину, хвост казался обременительным и не имеющим эволюционного смысла, так как он не соответствовал его теории «выживания наиболее приспособленных». Он был в ярости, пока не придумал теорию полового отбора, которая утверждает, что животные развивают определенные функции, чтобы увеличить свои шансы на спаривание. Поэтому павлины имеют различные приспособления для привлечения партнерши.

Есть около 5000 типов пауков, и все они создают почти идеальное круговое полотно с радиальными поддерживающими нитями почти на равном расстоянии и спиральной тканью для ловли добычи. Ученые не уверены, почему пауки так любят геометрию, так как испытания показали, что круглое полотно не заманит еду лучше, чем полотно неправильной формы. Ученые предполагают, что радиальная симметрия равномерно распределяет силу удара, когда жертва попадает в сети, в результате чего получается меньше разрывов.


Дайте паре обманщиков доску, косилки и спасительную темноту, и вы увидите, что люди тоже создают симметричные формы. Из-за того, что круги на полях отличаются сложностью дизайна и невероятной симметрией, даже после того, как создатели кругов признались и продемонстрировали свое мастерство, многие люди до сих пор верят, что это сделали космические пришельцы.

По мере усложнения кругов все больше проясняется их искусственное происхождение. Нелогично предполагать, что пришельцы будут делать свои сообщения все более трудными, когда мы не смогли расшифровать даже первые из них.

Независимо от того, как они появились, круги на полях приятно рассматривать, главным образом потому, что их геометрия впечатляет.


Даже такие крошечные образования, как снежинки, регулируются законами симметрии, так как большинство снежинок имеет шестигранную симметрию. Это происходит в частности из-за того, как молекулы воды выстраиваются, когда затвердевают (кристаллизуются). Молекулы воды приобретают твердое состояние, образуя слабые водородные связи, они выравниваются в упорядоченном расположении, которое уравновешивает силы притяжения и отталкивания, формируя гексагональную форму снежинки. Но при этом каждая снежинка симметрична, но ни одна снежинка не похожа на другую. Это происходит потому, что падая с неба, каждая снежинка испытывает уникальные атмосферные условия, которые заставляют её кристаллы располагаться определенным образом.

9. Галактика Млечный Путь

Как мы уже видели, симметрия и математические модели существуют почти везде, но разве эти законы природы ограничиваются нашей планетой? Очевидно, нет. Недавно открыли новую секцию на краю Галактики Млечного Пути, и астрономы считают, что галактика представляет собой почти идеальное зеркальное отражение себя.

10. Симметрия Солнца-Луны

Если учесть, что Солнце имеет диаметр 1,4 млн. км, а Луна – 3474 км, кажется почти невозможным то, что Луна может блокировать солнечный свет и обеспечивать нам около пяти солнечных затмений каждые два года. Как это получается? Так совпало, что наряду с тем, что ширина Солнца примерно в 400 раз больше, чем Луна, Солнце также в 400 раз дальше. Симметрия обеспечивает то, что Солнце и Луна получаются одного размера, если смотреть с Земли, и поэтому Луна может закрыть Солнце. Конечно, расстояние от Земли до Солнца может увеличиваться, поэтому иногда мы видим кольцевые и неполные затмения. Но каждые один-два года происходит точное выравнивание, и мы становимся свидетелями захватывающих событий, известных как полное солнечное затмение. Астрономы не знают, как часто встречается такая симметрия среди других планет, но они думают, что это довольно редкое явление. Тем не менее, мы не должны предполагать, что мы особенные, так как все это дело случая. Например, каждый год Луна отдаляется примерно на 4 см от Земли, это означает, что миллиарды лет назад каждое солнечное затмение было бы полным затмением. Если и дальше все пойдет так, то полные затмения, в конце концов, исчезнут, и это будет сопровождаться исчезновением кольцевых затмений. Получается, что мы просто находимся в нужном месте в нужное время, чтобы увидеть это явление.

Осевая симметрия и понятие совершенства

Осевая симметрия присуща всем формам в природе и является одним из основополагающих принципов красоты. С древнейших времен человек пытался

постигнуть смысл совершенства. Впервые обосновали это понятие художники, философы и математики Древней Греции. Да и само слово "симметрия" было придумано ими. Обозначает оно пропорциональность, гармоничность и тождественность частей целого. Древнегреческий мыслитель Платон утверждал, что прекрасным может быть только тот объект, который симметричен и соразмерен. И действительно, «радуют глаз» те явления и формы, которые имеют пропорциональность и завершенность. Их мы называем правильными.

Осевая симметрия как понятие

Симметрия в мире живых существ проявляется в закономерном расположении одинаковых частей тела относительно центра или оси. Чаще в

природе встречается осевая симметрия. Она обуславливает не только общее строение организма, но и возможности его последующего развития. Геометрические формы и пропорции живых существ формирует «осевая симметрия». Определениеее формулируется следующим образом: это свойство объектов совмещаться при различных преобразованиях. Древние считали, что принципом симметричности в наиболее полном объеме обладает сфера. Эту форму они полагали гармоничной и совершенной.

Осевая симметрия в живой природе

Если взглянуть на любое живое существо, сразу бросается в глаза симметричность устройства организма. Человек: две руки, две ноги, два глаза, два уха и так далее. Каждому виду животных присущ характерный окрас. Если в расцветке фигурирует рисунок, то, как правило, он зеркально дублируется с обеих сторон. Это означает, что существует некая линия, по которой животные и люди могут быть визуально поделены на две идентичные половинки, то есть в основе их геометрического устройства лежит осевая симметрия. Любой живой организм природа создает не хаотично и бессмысленно, а согласно общим законам мироустройства, ведь во Вселенной ничто не имеет чисто эстетического, декоративного назначения. Наличие различных форм также обусловлено закономерной необходимостью.

Осевая симметрия в неживой природе

В мире нас повсюду окружают такие явления и предметы, как: тайфун, радуга, капля, листья, цветы и т.д. Их зеркальная, радиальная, центральная, осевая симметрия - очевидны. В значительной степени она обусловлена явлением гравитации. Часто под понятием симметрия понимается регулярность смены каких-либо явлений: день и ночь, зима, весна, лето и осень и так далее. Практически, это свойство существует везде, где наблюдается упорядоченность. Да и сами законы природы - биологические, химические, генетические, астрономические, подчинены общим для нас всех принципам симметрии, поскольку имеют завидную системность. Таким образом, сбалансированность, тождественность как принцип имеет всеобщий масштаб. Осевая симметрия в природе - это один из «краеугольных» законов, на котором базируется мироздание в целом.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение.

Я иногда невольно задалась вопросом: а нет ли чего-то общего в формах растений, животных? Возможно, существует какая-то закономерность, какие-то причины, придающие такое неожиданное сходство самым разнообразным листьям, цветам, животным? Кроме того, когда папа мне рассказывал кое-что о животных, он упомянул, что симметричным быть очень удобно. Так, если у вас со всех сторон есть глаза, уши, носы, рты и конечности, то вы успеете вовремя почувствовать что-то подозрительное, с какой бы стороны оно ни подкрадывалось, и, в зависимости от того, какое оно, это подозрительное, — съесть его или, наоборот, от него удрать.

На уроках биологии я выяснила, что базовое свойство большинства живых существ является симметрия. Возможно, именно законами симметрии можно объяснить такую похожесть в листьях, цветах, животном мире.

Целью моей работы будет определение роли симметрии в живой и неживой природе.

Для достижения цели исследования необходимо реализовать следующие задачи:

    познакомиться подробнее с понятием симметрии;

    найти подтверждение существования симметрии в природе;

    подготовить презентацию;

    представить презентацию.

Теоретическая часть.

    1. Основные понятия о симметрии

К слову «симметрия» мы привыкаем с детства, и кажется, что в этом ясном понятии ничего загадочного быть не может. Законам симметрии подчиняются все формы на свете. Даже «вечно свободные» облака обладают симметрией, хотя и искаженной. Замирая на голубом небе, они напоминают медленно движущихся в морской воде медуз, явно тяготея к поворотной симметрии, а потом, гонимые поднявшимся ветерком, меняют симметрию на зеркальную.

Проблеме симметрии посвящено поистине необозримо много литературы. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.

Понятие симметрии исторически вырастает из эстетических представлений. Она широко проявляется в наскальных рисунках, первобытных изделиях труда и быта, что свидетельствует о ее древности.

Понятие симметрии берет начало с Древней Греции. Оно впервые были введено в V в. до н. э. скульптором Пифагором из Региума, который понимал под симметрией красоту человеческого тела и красоту вообще, а отклонение от симметрии определил термином «асимметрия». В трудах древнегреческих философов (пифагорейцев, Платона, Аристотеля) чаще встречаются понятия «гармония», «пропорция», чем «симметрия».

Существует множество определений симметрии:

      • словарь иностранных слов: «Симметрия - [греч. symmetria] - полное зеркальное соответствие в расположении частей целого относительно средней линии, центра; соразмерность»;

        краткий Оксфордский словарь: «Симметрия - красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью»;

        словарь С. И. Ожегова: «Симметрия - соразмерность, пропорциональность частей чего-нибудь, расположенных по обе стороны от середины, центра»;

        «Химическое строение биосферы Земли и ее окружения» В. И. Вернадского: «В науках о природе симметрия есть выражение геометрически пространственных правильностей, эмпирически наблюдаемых в природных телах и явлениях. Она, следовательно, проявляется, очевидно, не только в пространстве, но и на плоскости и на линии».

Но наиболее полным и обобщающим все вышеперечисленные определения мне кажется мнение Ю. А. Урманцева: «Симметрией называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях.»

Слово «симметрия» имеет двойственное толкование.

В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое.

Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т. е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными. Равенство и одинаковость расположения частей фигуры выявляют посредством операций симметрии. Операциями симметрии называют повороты, переносы, отражения.

    1. Симметрия в геометрии

2.1 Симметрия геометрических фигур (тел) .

Зеркальная симметрия. Геометрическая фигура (рис. 1) называется симметричной относительно плоскости S, если для каждой точки E этой фигуры может быть найдена точка E’ этой же фигуры, так что отрезок EE’ перпендикулярен плоскости S и делится этой плоскостью пополам (EA = AE). Плоскость S называется плоскостью симметрии. Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка не подходит для правой руки и наоборот). Они называются зеркально равными.

Центральная симметрия. Геометрическая фигура (рис. 2) называется симметричной относительно центра C , если для каждой точки A этой фигуры может быть найдена точка E этой же фигуры, так что отрезок AE проходит через центр C и делится в этой точке пополам (AC = CE). Точка C называется центром симметрии.

Симметрия вращения. Тело (рис. 3) обладает симметрией вращения, если при повороте на угол 360°/n (здесь n - целое число) вокруг некоторой прямой AB (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию. Треугольники имеют также осевую симметрию.

Примеры вышеупомянутых видов симметрии (рис. 4).

Шар (сфера) обладает и центральной, и зеркальной, и симметрией вращения. Центром симметрии является центр шара; плоскостью симметрии является плоскость любого большого круга; осью симметрии - диаметр шара.

Круглый конус обладает осевой симметрией; ось симметрии - ось конуса.

Прямая призма обладает зеркальной симметрией. Плоскость симметрии параллельна её основаниям и расположена на одинаковом расстоянии между ними.

2.2 Симметрия плоских фигур .

Зеркально-осевая симметрия. Если плоская фигура ABCDE (рис. 5 справа) симметрична относительно плоскости S (что возможно, если только плоская фигура перпендикулярна плоскости S), то прямая KL, по которой эти плоскости пересекаются, является осью симметрии второго порядка фигуры ABCDE. В этом случае фигура ABCDE называется зеркально-симметричной.

Центральная симметрия. Если плоская фигура ABCDEF имеет ось симметрии второго порядка, перпендикулярную плоскости фигуры - прямая MN (рис. 5 слева), то точка O, в которой пересекаются прямая MN и плоскость фигуры ABCDEF, является центром симметрии.

Примеры симметрии плоских фигур (рис. 6).

Параллелограмм имеет только центральную симметрию. Его центр симметрии - точка пересечения диагоналей.

Равнобочная трапеция имеет только осевую симметрию. Её ось симметрии - перпендикуляр, проведенный через середины оснований трапеции.

Ромб имеет и центральную, и осевую симметрию. Его ось симметрии - любая из его диагоналей; центр симметрии - точка их пересечения.

    1. Виды симметрии в природе

Самая безупречная, «самая симметричная» из всех симметрий — сферическая, когда у тела не отличаются верхняя, нижняя, правая, левая, передняя и задняя части, и оно совпадает само с собой при повороте вокруг центра симметрии на любой угол. Однако это возможно только в такой среде, которая сама идеально симметрична во всех направлениях и в которой со всех сторон на тело действуют одни и те же силы. Но на нашей земле подобной среды нет. Существует по крайней мере одна сила — сила тяжести, — которая действует только по одной оси (верх-низ) и не влияет на остальные (вперед-назад, вправо-влево). Она всё тянет вниз. И живым существам приходится к этому приспосабливаться.

Так возникает следующий тип симметрии — радиальная. У радиально-симметричных существ есть верхняя и нижняя части, но правой и левой, передней и задней нет. Они совпадают сами с собой при вращении только вокруг одной оси. К ним относятся, например, морские звезды и гидры. Эти создания малоподвижны и занимаются «тихой охотой» за проплывающей мимо живностью. Радиальная симметрия присуща медузам и полипам, поперечным разрезам плодов яблок, лимонов, апельсинов, хурмы (рис. 7) и т. д

Но если какое-то существо собирается вести активный образ жизни, гоняясь за жертвами и удирая от хищников, для него приобретает важность еще одно направление — передне-заднее. Та часть тела, которая находится впереди, когда животное двигается, становится более значимой. Сюда «переползают» все органы чувств, а заодно и нервные узлы, которые анализируют полученную от органов чувств информацию (у некоторых счастливчиков эти узлы потом превратятся в головной мозг). К тому же, спереди должен находиться рот, чтобы успеть ухватить настигнутую добычу. Всё это обычно располагается на отдельном участке тела — голове (у радиально-симметричных животных головы нет в принципе). Так возникает билатеральная (или двусторонняя) симметрия. У билатерально-симметричного существа отличаются верхняя и нижняя, передняя и задняя части, и только правая и левая идентичны и являются зеркальным отображением друг друга. В неживой природе этот вид симметрии не имеет преобладающего значения, но зато чрезвычайно богато представлен в живой природе (рис. 8).

У некоторых животных, например у кольчатых червей, помимо билатеральной есть и еще одна симметрия — метамерная . Их тело (за исключением самой передней части) состоит из одинаковых члеников-метамеров, и если сдвигаться вдоль тела, червь сам с собой «совпадает». У более развитых животных, включая человека, сохраняется слабое «эхо» такой симметрии: в каком-то смысле, наши позвонки и рёбра тоже можно назвать метамерами (рис. 9).

Итак, согласно многочисленным литературным данным в природе действуют законы симметрии, которые обеспечивают её красоту и гармонию, и объясняются действием естественного отбора.

Я подошла к зеркалу и увидела, что у меня две руки, две ноги, два уха, два глаза, которые расположены зеркально-симметрично. Но когда я пригляделась к себе, то заметила, что один глаз чуточку больше прищурен, другой меньше, одна бровь изогнута более, другая — менее; одно ухо выше, другое ниже, большой палец левой руки чуть меньше пальца правой. Так есть ли симметрия в природе и можно ли её измерить, а не просто оценить визуально «на глазок»? А может быть существуют единицы измерения симметрии?

Практическая часть.

    Описание методики сбора и обработки данных

Для проведении исследования по доказательству наличия и измерению симметрии живых организмов (по совету папы) была использована методика «Оценка экологического состояния леса по асимметрии листьев», разработанная группой ученых Калужского государственного педагогического университета имени К. Э. Циолковского. В качестве объекта исследования авторы методики используют листья берёзы.

Исследования были проведены 19 сентября 2016 года. Во дворе моего дома растут березы: пять взрослых высоких деревьев. С каждого дерева я собрала по десять листьев (рис. 10). Материал был обработан сразу после сбора.

Для измерения я складывала лист поперек, пополам, прикладывая макушку листа к основанию, потом разгибала и по образовавшейся складке производила измерения (рис. 12).

1 - ширина половинки листа (считая от макушки листа к основанию);

2 - длина второй жилки второго порядка от основания листа;

3 - расстояние между основаниями первой и второй жилок второго порядка;

4 - расстояние между концами этих жилок.

Данные измерений я заносила в таблицу в программе excel, чтобы затем было проще обработать данные.

    Вычисление среднего относительного различия признака

Величину симметричности я оценивала с помощью интегрального показателя - величины среднего относительного различия признака (среднее арифметическое отношение разности к сумме промеров листа слева и справа, отнесенное к числу признаков).

С помощью программе excel в первом действии я находила относительное различие между значениями каждого признака слева и справа - Yi: находила разность значений измерений по одному признаку для каждого листа, затем сумму этих же значений и разность делила на сумму.

Yi = (Xл - Хп) : (Xл + Хп);

Найденные значения по каждому признаку Y1- Y4 вписывала в таблицу.

Во втором действии я находила значение среднего относительного различия между сторонами на признак для каждого листа (Z). Для этого сумму относительных различий делила на число признаков.

Y1 + Y2 + Y3 + Y4

Z1 = ________________________________,

где N - число признаков. В моем случае N = 4.

Подобные вычисления производила для каждого листа, а значения заносила в таблицу.

В третьем действии я вычисляла среднее относительное различие на признак для всей выборки (Х). Для этого все значения Z складывала и делила на число этих значений:

Z1 + Z2 + Z3 + Z4 + Z5 + Z6 + Z7 + Z8 + Z9 + Z10

X = ____________________________________________ ,

где n - число значений Z, т.е. число листьев (в нашем примере - 10).

Полученный показатель Х характеризует степень симметричности организма.

Для определения наличия симметричности я использовала рекомендованную в методике шкалу, в которой 1 балл - условная норма и наличие симметрии, а 5 балл - критическое отклонение от норы симметрии.

Сводная таблица данных.

№ дерева

1. Ширина половинок листа, мм

2. Длина 2-й жилки, мм

3. Расстояние между основаниями 1-й и 2-й жилок, мм

4. Расстояние между концами 1-й и 2-й жилок, мм

    Результаты исследования

Номер дерева

Значение показателя (Х)

Симметричность

Из представленной таблицы данных и диаграммы (рис. 13) видно, что все значения оказались в диапазоне до 0,055, что соответствует норме по шкале симметричности. Таким образом, все пять берез в моем дворе имели симметричные листья.

Заключение.

В результате моего исследования я убедилась, что симметрия в природе существует и её можно измерить.

СПИСОК ЛИТЕРАТУРЫ

    Демьяненко Т. В. «Симметрия в природе», Украина.

    Захаров В. М., Баранов А.С., Борисов В.И., Валецкий А.В., Кряжева Н.Г., Чистякова Е.К., Чубинишвили А.Т. Здоровье среды: методика оценки. - М., Центр экологической политики России, 2000.

    Рослова Л.О., Шарыгин И.Ф. Симметрия: Учебное пособие, М.: Изд-во гимназии «Открытый мир», 1995.

    Детская энциклопедия для среднего и старшего возраста т.3.- М.: Издательство Академии Педагогических Наук РСФСР, 1959.

    Я познаю мир: Детская энциклопедия: Математика / Сост. А.П. Савин, В.В. Станцо, А.Ю. Котова: Под общ.ред. О.Г. Хинн. - М.: ООО «Издательство АСТ - ЛТД», 1998.

    И.Ф. Шарыгин, Л.Н. Ерганжиева Наглядная геометрия 5-6 классы. - М.: Дрофа, 2005.

    Большая компьютерная энциклопедия Кирилла и Мефодия.

    Андрущенко А.В. Развитие пространственного воображения на уроках математики. М.: Владос, 2003.

    Иванова О. Интегрированный урок «Этот симметричный мир»// газета Математика. 2006. №6 с.32-36.

    Ожегов С.И. Толковый словарь русского языка. М. 1997.

    Вульф Г.В. Симметрия и ее проявления в природе. М., Изд. Отд. Нар. ком. Просвещение, 1991. с. 135.

    Шубников А.В.. Симметрия. М., 1940.

    http://kl10sch55.narod.ru/kl/sim.htm#_Toc157753210

    http://www.wikiznanie.ru/ru-wz/index.php/

ВВЕДЕНИЕ: Проблеме симметрии посвящена поистине необозримая литература. Отучебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью. В "Кратком Оксфордском словаре" симметрия определяется как "красота,обусловленная пропорциональностью частей тела или любого целого,равновесием, подобием, гармонией, согласованностью" (сам термин "симметрия" по-гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого) . Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. С симметрией мы встречаемся всюду. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания; его широко используют все без исключения направления современной науки. Что же такое симметрия? Почему симметрия буквально пронизывает весь окружающий нас мир? Существуют, в принципе, две группы симметрий. К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией. Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой - к их нарушению. Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, через понятие симметрии. «Симметрия, - пишет известный ученый Дж. Ньюмен, - устанавливает забавное и удивительное родство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...". Слово «симметрия» имеет двойственное толкование. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей. Из этого высказывания следует, что Аристотель, пожалуй, был ближе всех к открытию одной из самых фундаментальных закономерностей Природы - закономерности о ее двойственности. Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливались факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физиками в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются, прежде всего, законы сохранения классической физики. В настоящее время в естествознании преобладают определения категорий симметрии и асимметрии на основании перечисления определенных признаков. Например, симметрия определяется как совокупность свойств: порядка, однородности, соразмерности, гармоничности. Все признаки симметрии во многих ее определениях рассматриваются равноправными, одинаково существенными, и в отдельных конкретных случаях, при установлении симметрии какого-то явления, можно пользоваться любым из них. Так, в одних случаях симметрия - это однородность, в других - соразмерность и т. д. То же самое можно сказать и о существующих в частных науках определениях асимметрии. ЗНАЧЕНИЕ СИММЕТРИИ В ПОЗНАНИИ ПРИРОДЫ Идея симметрии часто являлась отправным пунктом в гипотезах и теориях ученых прошлого. Вносимая симметрией упорядоченность проявляется, прежде всего, в ограничении многообразия возможных структур, в сокращении числа возможных вариантов. В качестве важного физического примера можно привести факт существования определяемых симметрией ограничений разнообразия структур молекул и кристаллов. Поясним эту мысль на следующем примере. Допустим, что в некоторой отдаленной галактике обитают высокоразвитые существа, увлекающиеся среди прочих занятий также играми. Мы можем ничего не знать о вкусах этих существ, о строении их тела и особенностях психики. Однако достоверно, что их игральные кости имеют одну из пяти форм - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр. Всякая иная форма игральной кости в принципе исключена, поскольку требование равновероятности выпадения при игре любой грани предопределяет использование формы правильного многогранника, а таких форм только пять. Идея симметрии часто служила ученым путеводной нитью при рассмотрении проблем мироздания. Наблюдая хаотическую россыпь звезд на ночном небе, мы понимаем, что за внешним хаосом скрываются вполне симметричные спиральные структуры галактик, а в них - симметричные структуры планетных систем. Симметрия внешней формы кристалла является следствием ее внутренней симметрии - упорядоченного взаимного расположения в пространстве атомов (молекул). Иначе говоря, симметрия кристалла связана с существованием пространственной решетки из атомов, так называемой кристаллической решетки. Согласно современной точке зрения, наиболее фундаментальные законы природы носят характер запретов. Они определяют, что может, а что не может происходить в природе. Так, законы сохранения в физике элементарных частиц являются законами запрета. Они запрещают любое явление, при котором изменялась бы "сохраняющаяся величина", являющаяся собственной «абсолютной» константой (собственным значением) соответствующего объекта и характеризующая его «вес» в системе других объектов. И эти значения являются абсолютными до тех пор, пока такой объект существует. В современной науке все законы сохранения рассматриваются именно как законы запрета. Так, в мире элементарных частиц многие законы сохранения получены как правила, запрещающие те явления, которые никогда не наблюдаются в экспериментах. Видный советский ученый академик В. И. Вернадский писал в 1927 году: "Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности". Действительно, всеобщность симметрии поразительна. Симметрия устанавливает внутренние связи между объектами и явлениями, которые внешне никак не связаны. Всеобщность симметрии не только в том, что она обнаруживается в разнообразных объектах и явлениях. Всеобщим является сам принцип симметрии, без которого по сути дела нельзя рассмотреть ни одной фундаментальной проблемы, будь то проблема жизни или проблема контактов с внеземными цивилизациями. Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Следует выделить аспекты, без которых симметрия невозможна:

1) объект - носитель симметрии; в роли симметричных объектов могут выступать вещи, процессы, геометрические фигуры, математические выражения, живые организмы и т.д.

2) некоторые признаки - величины, свойства, отношения, процессы, явления - объекта, которые при преобразованиях симметрии остаются неизменными; их называют инвариантными или инвариантами.

3)изменения (объекта), которые оставляют объект тождественным самому себе по инвариантным признакам; такие изменения называются преобразованиями симметрии;

4) свойство объекта превращаться по выделенным признакам в самого себя после соответствующих его изменений.

Важно подчеркнуть, что инвариант вторичен по отношению к изменению; покой относителен, движение абсолютно.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д. В связи с этим выделяют разные типы симметрии.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой при повороте на угол 2?/n, где n может равняться 2, 3, 4 и т.д. до бесконечности. Ось симметрии называется ось осью n-го порядка.

ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ . О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой.
Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние а - элементарным переносом или периодом. С данным типом симметрии связано понятие периодических структур или решеток, которые могут быть и плоскими, и пространственными.

Измена мужа