Формула Бейеса. Формула полной вероятности

Краткая теория

Если событие наступает только при условии появления одного из событий образующих полную группу несовместных событий, то равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность кошелек .

При этом события называются гипотезами, а вероятности – априорными. Эта формула называется формулой полной вероятности.

Формула Байеса применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий образующих полную группу событий произошло и требуется провести количественную переоценку вероятностей гипотез . Априорные (до опыта) вероятности известны. Требуется вычислить апостериорные (после опыта) вероятности, т.е. по существу нужно найти условные вероятности . Формула Байеса выглядит так:

Пример решения задачи

Условие задачи 1

На фабрике станки 1,2 и 3 производят соответственно 20%, 35% и 45% всех деталей. В их продукции брак составляет соответственно 6%, 4%, 2%. Какова вероятность того, что случайно выбранное изделие оказалось дефектным? Какова вероятность того, что оно было произведено: а) станком 1; б) станком 2; в) станком 3?

Решение задачи 1

Обозначим через событие, состоящее в том, что стандартное изделие оказалось дефектным.

Событие может произойти только при условии наступления одного из трех событий:

Изделие произведено на станке 1;

Изделие произведено на станке 2;

Изделие произведено на станке 3;

Запишем условные вероятности:

Формула полной вероятности

Если событие может произойти только при выполнении одного из событий , которые образуютполную группу несовместных событий, то вероятность события вычисляется по формуле

По формуле полной вероятности находим вероятность события :

Формула Байеса

Формула Байеса позволяет «переставить причину и следствие»: по известному факту события вычислить вероятность того, что оно было вызвано данной причиной.

Вероятность того, что дефектное изделие изготовлено на станке 1:

Вероятность того, что дефектное изделие изготовлено на станке 2:

Вероятность того, что дефектное изделие изготовлено на станке 3:

Условие задачи 2

Группа состоит из 1 отличника, 5 хорошо успевающих студентов и 14 студентов, успевающих посредственно. Отличник отвечает на 5 и 4 с равной вероятностью, хорошист отвечает на 5, 4 и 3 с равной вероятностью, и посредственно успевающий студент отвечает на 4,3 и 2 с равной вероятностью. Случайно выбранный студент ответил на 4. Какова вероятность того, что был вызван посредственно успевающий студент?

Решение задачи 2

Гипотезы и условные вероятности

Возможны следующие гипотезы:

Отвечал отличник;

Отвечал хорошист;

–отвечал посредственно занимающийся студент;

Пусть событие -студент получит 4.

Условные вероятности:

Ответ:


Дано определение геометрической вероятности и подробно рассмотрена широко известная задача о встрече.

На практике часто необходимо определить вероятность интересующего события, которое может произойти с одним из событий, образующих полную группу. Следующая теорема, являющаяся следствием теорем сложения и умножения вероятности, приводит к выводу важной формулы для вычисления вероятности подобных событий. Эта формула называется формулой полной вероятности.

Пусть H 1 , H 2 , … , H n есть n попарно несовместных событий, образующих полную группу:

1) все события попарно несовместны: H i H j = ; i , j = 1,2, … , n ; i j;

2) их объединение образует пространство элементарных исходов W:

Такие события иногда называют гипотезами. Пусть совершается событие А , которое может наступить только при условии наступления одного из событий H i (i = 1, 2, … , n ). Тогда справедлива теорема.

Доказательство. Действительно, по условию событие А может наступить, если наступает одно из несовместных событий H 1 , H 2 … H n , т.е. появление события А означает осуществление одного из событий H 1 ∙ А , H 2 ∙ А , … , H n ∙ А . Последние события также несовместны, т.к. из H i ∙ H j = (i j ) следует, что и (А H i) ∙ (А H j) = (i j ). Теперь заметим, что

Это равенство хорошо иллюстрируется рис. 1.19. Из теоремы сложения следует . Но по теореме умножения справедливо равенст-во при любом i, 1i n . Следовательно, фор-мула полной вероятности (1.14) справедлива. Теорема доказана.

Замечание. Вероятности событий (гипотез) H 1 , H 2 , … , H n , которые входят в формулу (1.14) при решении конкретных задач или заданы или же они должны быть вычислены в процессе решения. В последнем случае правильность вычисления р (H i) (i = 1, 2, … , n ) проверяется по соотношению = 1 и расчёт р (H i) выполняется на первом этапе решения задачи. На втором этапе рассчитывается р (А ).

При решении задач на применении формулы полной вероятности удобно придерживаться следующей методики.

Методика применения формулы полной вероятности

а). Ввести в рассмотрение событие (обозначим его А ), вероятность которого необходимо определить по условию задачи.

б). Ввести в рассмотрение события (гипотезы) H 1 , H 2 , … , H n , которые образуют полную группу.

в). Выписать или вычислить вероятности гипотез р (H 1), р (H 2), … , р (H n). Контроль правильности вычисления р (H i) проверяется по условию В большем числе задач вероятности р (H i) задаются непосредственно в условии задачи. Иногда эти вероятности, а также вероятности p (А /H 1), p (А /H 2), …, p (А /H n) умножены на 100 (заданы числа в процентах). В этом случае заданные числа надо поделить на 100.

г). Вычислить искомую вероятность р (А ) по формуле (1.14).

Пример . Экономист рассчитал, что вероятность роста стоимости акции его компании в следующем году составит 0,75, если экономика страны будет на подъёме, и 0,30, если будет финансовый кризис. По мнению экспертов, вероятность экономического подъёма равна 0,6. Оценить вероятность того, что акции компании в следующем году поднимутся в цене.

Решение. В начале условие задачи формализуется по вероятности. Пусть А – событие ” акции поднимутся в цене” (по вопросу задачи). По условию задачи выделяются гипотезы: H 1 – “экономика будет на подъёме”, H 2 – “экономика вступит в полосу кризиса”. H 1 , H 2 – образуют полную группу, т.е. H 1 ∙ H 2 = , H 1 + H 2 = . Вероятность p (H 1) = 0,6, следовательно, p (H 2) = 1 – 0,6 = 0,4. Условные вероятности p (А /H 1) = 0,75, p (А /H 2) = 0,3. Используя формулу (1.14), получим:

p (А ) = p (H 1) ∙ p (А /H 1) + p (H 2) ∙ p (А /H 2) = 0,75 ∙ 0,6 + 0,3 ∙ 0,4 = 0,57.

1. Формула полной вероятности.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , которые образуют полную группу. Пусть известны вероятности этих событий и условные вероятности P(A/B 1), P(A/B 2), ..., P(A/B n) события А. Требуется найти вероятность события А.

Теорема: Вероятность события А, которое может наступить лишь при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу, равна сумме произведений вероятностей каждого из этих событий на соответствующую условную вероятность события А:

– Формула полной вероятности.


Доказательство:

По условию, событие А может наступить, если наступит одно из несовместных событий B 1 , B 2 , B 3 , ..., B n . Другими словами, появление события А означает осуществление одного (безразлично какого) из несовместных событий: B 1 *A, B 2 *A , B 3 *A , ..., B n *A . Пользуясь теоремой сложения, получим:

По теореме умножения вероятностей зависимых событий имеем:

ч.т.д.

Пример: Имеется 2 набора деталей. Вероятность того, что деталь из первого набора стандартна, равна 0,8, а для второго набора- 0,9. Найдите вероятность того, что взятая наудачу деталь (из наудачу взятого набора) стандартна.

Решение: Событие А- «Извлеченная деталь стандартна». Событие -«Извлекли деталь, изготовленную 1 заводом». Событие - «Извлекли деталь, изготовленную вторым заводом». Р(B 1 )=Р(B 2)= 1/2.Р(А / B 1 )=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2 )=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Тогда, по формуле полной вероятности, имеем:

Пример: Сборщик получил 3 коробки деталей, изготовленных заводами №1 и 2 коробки деталей, изготовленных заводом №2. Вероятность того, что деталь, изготовленная заводом №1, стандартна равна 0,8. Для завода №2 эта вероятность равна 0,9. Сборщик наудачу извлек деталь из наудачу выбранной коробки. Найдите вероятность того, что извлечена стандартная деталь.

Решение: Событие А- «Извлечена стандартная деталь». Событие B 1 - «Извлечена деталь из коробки завода №1». Событие B 2 - «Извлечена деталь из коробки завода № 2». Р(B 1)= 3/5. Р(B 2 )= 2/5.

Р(А / B 1)=0,8- вероятность, что деталь, изготовленная на первом заводе, стандартна. Р(А / B 2)=0,9- вероятность, что деталь, изготовленная на втором заводе, стандартна.

Пример: В первой коробке лежит 20 радиоламп, из них- 18 стандартных. Во второй коробке лежит 10 радиоламп, из них- 9 стандартных. Из второй коробки в первую наудачу переложена одна радиолампа. Найдите вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.

Решение: Событие А-« Из 1 коробки извлекли стандартную лампу». Событие B 1 -«Из второй в первую коробку переложили стандартную лампу». Событие B 2 -«Из второй в первую коробку переложили нестандартную лампу». Р(B 1 )= 9/10. Р(B 2)= 1/10.Р(А / B 1)= 19/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее так же стандартная.

Р(А / B 2 )= 18/21 - вероятность вытащить из первой коробки стандартную деталь, при условии, что была переложена в нее нестандартная.

2. Формул гипотез Томаса Байеса.

Пусть событие А может наступить при условии появления одного из несовместных событий B 1 , B 2 , B 3 , ..., B n , образующих полную группу. Поскольку заранее неизвестно, какое из этих событий наступит, их называют гипотезами. Вероятность появления события А определяется по формуле полной вероятности, рассмотренной ранее.

Допустим, что произведено испытание, в результате которого произошло событие А. Поставим своей задачей определить, как изменились (в связи с тем, что событие А уже наступило) вероятности гипотез. Другими словами, будем искать условные вероятности P(B 1 /A), P(B 2 /A), ..., P(B n /A)

Найдем условную вероятность P(B 1 /A) . По теореме умножения имеем:

Отсюда следует:


Аналогично выводятся формулы, определяющие условные вероятности остальных гипотез, т.е. условная вероятность любой гипотезу B k (i =1, 2, …, n ) может быть вычислена по формуле:

Формулы гипотез Томаса Байеса.

Томас Байес (английский математик) опубликовал формулу в 1764 году.

Данные формулы позволяют переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А.

Пример: Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятность того, что деталь попадет к первому контролеру, равна 0,6, ко второму- 0,4. Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,94, для второго контролера эта вероятность равна 0,98.Годная деталь при проверке была признана стандартной. Найдите вероятность того, что эту деталь проверил первый контролер.

Решение: Событие А- «Годная деталь признана стандартной». Событие B 1 - «Деталь проверял первый контролер». Событие B 2 - «Деталь проверил второй контролер». Р(B 1 )=0,6. Р(B 2 )=0,4.

Р(А / B 1)=0,94- вероятность, что деталь, проверенная первым контролером, признана стандартной.

Р(А / B 2)=0,98 - вероятность, что деталь, проверенная вторым контролером, признана стандартной.

Тогда:

Пример: Для участия в студенческих отборочных спортивных соревнованиях выделено из первой группы курса-4 человека, из второй- 6 человек, из третьей- 5 человек. Вероятность того, что студент первой группы попадет в сборную, равна 0,9, для студентов второй и третьей групп эти вероятности соответственно равны 0,7 и 0,8. Наудачу выбранный студент в итоге соревнования попал в сборную К какой из групп, вероятнее всего, он принадлежит?

Решение: Событие А- «Наудачу выбранный студент, попал в сборную института». Событие B 1 - «Наудачу выбран студент из первой группы». Событие B 2 - «Наудачу выбран студент из второй группы». Событие B 3 - «Наудачу выбран студент из третьей группы». Р(B 1)= 4/15 . Р(B 2)= 6/15. Р(B 3)= 5/15 .

Р(А / B 1)=0,9- вероятность, что студент из первой группы попадет в сборную.

Р(А / B 2)=0,7- вероятность, что студент из второй группы попадет в сборную.

Р(А / B 3 )=0,8- вероятность, что студент из третьей группы попадет в сборную.

Тогда:

Вероятность, что в сборную попал студент из первой группы.


Вероятность, что в сборную попал студент из второй группы.


Вероятность, что в сборную попал студент из третьей группы.


Вероятнее всего в сборную попадет студент из второй группы.

Пример: При отклонении от нормального режима работы автомата сработает сигнализатор С 1 с вероятностью 0,8, а сигнализатор С 2 сработает с вероятностью 1. Вероятность того, что автомат снабжен сигнализатором С 1 или С 2 соответственно равны 0,6 и 0,4. Получен сигнал о разделке автомата. Что вероятнее: автомат снабжен сигнализатором С 1 или С 2 ?

Решение: Событие А-«Получен сигнал о разделке автомата». Событие B 1 -« Автомат снабжен сигнализатором С1. Событие B 2 - «Автомат снабжен сигнализатором С2. Р(B 1 )= 0,6. Р(B 2)= 0,8.

Р(А / B 1)=0,8- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С1.

Р(А / B 2 )=1- вероятность, что будет получен сигнал, при условии, что автомат снабжен сигнализатором С2.

Тогда:

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С1.

Вероятность, что при получении сигнала о разделке автомата, сработал сигнализатор С2.


Т.е. вероятнее, что при разделке автомата будет получен сигнал от сигнализатора С1.

События образуют полную группу , если хотя бы одно из них обязательно произойдет в результате эксперимента и попарно несовместны.

Предположим, что событие A может наступить только вместе с одним из нескольких попарно несовместных событий , образующих полную группу. Будем называть события (i = 1, 2,…, n ) гипотезами доопыта (априори). Вероятность появления события А определяется по формуле полной вероятности :

Пример 16. Имеются три урны. В первой урне находятся 5 белых и 3 черных шара, во второй – 4 белых и 4 черных шара, а в третьей – 8 белых шаров. Наугад выбирается одна из урн (это может означать, например, что осуществляется выбор из вспомогательной урны, где находятся три шара с номерами 1, 2 и 3). Из этой урны наудачу извлекается шар. Какова вероятность того, что он окажется черным?

Решение. Событие A – извлечен черный шар. Если было бы известно, из какой урны извлекается шар, то искомую вероятность можно было бы вычислить по классическому определению вероятности. Введем предположения (гипотезы) относительно того, какая урна выбрана для извлечения шара.

Шар может быть извлечен или из первой урны (гипотеза ), или из второй (гипотеза ), или из третьей (гипотеза ). Так как имеются одинаковые шансы выбрать любую из урн, то .

Отсюда следует, что

Пример 17. Электролампы изготавливаются на трех заводах. Первый завод производит 30 % общего количества электроламп, второй – 25 %,
а третий – остальную часть. Продукция первого завода содержит 1% бракованных электроламп, второго – 1,5 %, третьего – 2 %. В магазин поступает продукция всех трех заводов. Какова вероятность того, что купленная в магазине лампа оказалась бракованной?

Решение. Предположения необходимо ввести относительно того, на каком заводе была изготовлена электролампа. Зная это, мы сможем найти вероятность того, что она бракованная. Введем обозначения для событий: A – купленная электролампа оказалась бракованной, – лампа изготовлена первым заводом, – лампа изготовлена вторым заводом,
– лампа изготовлена третьим заводом.

Искомую вероятность находим по формуле полной вероятности:

Формула Байеса. Пусть – полная группа попарно несовместных событий (гипотезы). А – случайное событие. Тогда,

Последнюю формулу, позволяющей переоценить вероятности гипотез после того, как становится известным результат испытания, в итоге которого появилось событие А, называют формулой Байеса .

Пример 18. В специализированную больницу поступают в среднем 50 % больных с заболеванием К , 30 % – c заболеванием L , 20 % –
с заболеванием M . Вероятность полного излечения болезни K равна 0,7 для болезней L и M эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найдите вероятность того, что этот больной страдал заболеванием K .


Решение. Введем гипотезы: – больной страдал заболеванием К L , – больной страдал заболеванием M .

Тогда по условию задачи имеем . Введем событие А – больной, поступивший в больницу, был выписан здоровым. По условию

По формуле полной вероятности получаем:

По формуле Байеса .

Пример 19. Пусть в урне пять шаров и все предположения о количестве белых шаров равновозможные. Из урны наудачу взят шар, он оказался белым. Какое предположение о начальном составе урны наиболее вероятно?

Решение. Пусть – гипотеза, состоящая в том, что в урне белых шаров , т. е. возможно сделать шесть предположений. Тогда по условию задачи имеем .

Введем событие А – наудачу взятый шар белый. Вычислим . Так как , то по формуле Байеса имеем:

Таким образом, наиболее вероятной является гипотеза , т. к. .

Пример 20. Два из трех независимо работающих элемента вычислительного устройства отказали. Найдите вероятность того, что отказали первый и второй элементы, если вероятности отказа первого, второго и третьего элементов соответственно равны 0,2; 0,4 и 0,3.

Решение. Обозначим через А событие – отказали два элемента. Можно сделать следующие гипотезы:

– отказали первый и второй элементы, а третий элемент исправен. Поскольку элементы работают независимо, применима теорема умножения:

Пример №1 . Предприятие, производящее компьютеры, получает одинаковые комплектующие детали от трех поставщиков. Первый поставляет 50 % всех комплектующих деталей, второй - 20 %, третий - 30 % деталей.
Известно, что качество поставляемых деталей разное, и в продукции первого поставщика процент брака составляет 4 %, второго - 5 %, третьего - 2 %. Определить вероятность того, что деталь, выбранная наудачу из всех полученных, будет бракованной.

Решение . Обозначим события: A - «выбранная деталь бракована», H i - «выбранная деталь получена от i-го поставщика», i =1, 2, 3 Гипотезы H 1 , H 2 , H 3 образуют полную группу несовместных событий. По условию
P(H 1) = 0.5; P(H 2) = 0.2; P(H 3) = 0.3
P(A|H 1) = 0.04; P(A|H 2) = 0.05; P(A|H 3) = 0.02

По формуле полной вероятности (1.11) вероятность события A равна
P(A) = P(H 1) · P(A|H 1) + P(H 2) · P(A|H 2) + P(H 3) · P(A|H 3) = 0.5 · 0.04 + 0.2 · 0.05 + 0.3 · 0.02=0.036
Вероятность того, что выбранная наудачу деталь окажется бракованной, равна 0.036.

Пусть в условиях предыдущего примера событие A уже произошло: выбранная деталь оказалась бракованной. Какова вероятность того, что она была получена от первого поставщика? Ответ на этот вопрос дает формула Байеса .
Мы начинали анализ вероятностей, имея лишь предварительные, априорные значения вероятностей событий. Затем был произведен опыт (выбрана деталь), и мы получили дополнительную информацию об интересующем нас событии. Имея эту новую информацию, мы можем уточнить значения априорных вероятностей. Новые значения вероятностей тех же событий будут уже апостериорными (послеопытными) вероятностями гипотез (рис. 1.5).

Схема переоценки гипотез
Пусть событие A может осуществиться лишь вместе с одной из гипотез H 1 , H 2 , …, H n (полная группа несовместных событий). Априорные вероятности гипотез мы обозначали P(H i) условные вероятности события A - P(A|H i), i = 1, 2,…, n. Если опыт уже произведен и в результате него наступило событие A, то апостериорными вероятностями гипотез будут условные вероятности P(H i |A), i = 1, 2,…, n. В обозначениях предыдущего примера P(H 1 |A) - вероятность того, что выбранная деталь, оказавшаяся бракованной, была получена от первого поставщика.
Нас интересует вероятность события H k |A Рассмотрим совместное наступление событий H k и A то есть событие AH k . Его вероятность можно найти двумя способами, используя формулы умножения (1.5) и (1.6):
P(AH k) = P(H k)P(A|H k);
P(AH k) = P(A)P(H k |A).

Приравняем правые части этих формул
P(H k) · P(A|H k) = P(A) · P(H k |A),

отсюда апостериорная вероятность гипотезы H k равна

В знаменателе стоит полная вероятность события A. Подставив вместо P(A) ее значение по формуле полной вероятности (1.11), получим:
(1.12)
Формула (1.12) называется формулой Байеса и применяется для переоценки вероятностей гипотез.
В условиях предыдущего примера найдем вероятность того, что бракованная деталь была получена от первого поставщика. Сведем в одну таблицу известные нам по условию априорные вероятности гипотез P(H i) условные вероятности P(A|H i) рассчитанные в процессе решения совместные вероятности P(AH i) = P(H i) · P(A|H i) и рассчитанные по формуле (1.12) апостериорные вероятности P(H k |A), i,k = 1, 2,…, n (табл. 1.3).

Таблица 1.3 - Переоценка гипотез

Гипотезы H i Вероятности
Априорные P(H i) Условные P(A|H i) Совместные P(AH i) Апостериорные P(H i |A)
1 2 3 4 5

H 1 - деталь получена от первого поставщика

0.5 0.04 0.02

H 2 - деталь получена от второго поставщика

0.2 0.05 0.01

H 3 - деталь получена от третьего поставщика

0.3 0.02 0.006
Сумма 1.0 - 0.036 1
Рассмотрим последнюю строку этой таблицы. Во второй колонке стоит сумма вероятностей несовместных событий H 1 , H 2 , H 3 , образующих полную группу:
P(Ω) = P(H 1 + H 2 + H 3) = P(H 1) + P(H 2) + P(H 3) = 0.5 + 0.2 + 0.3 = 1
В четвертой колонке значение в каждой строке (совместные вероятности) получено по правилу умножения вероятностей перемножением соответствующих значений во второй и третьей колонках, а в последней строке 0.036 - есть полная вероятность события A (по формуле полной вероятности).
В колонке 5 вычислены апостериорные вероятности гипотез по формуле Байеса (1.12):

Аналогично рассчитываются апостериорные вероятности P(H 2 |A) и P(H 3 |A), причем числитель дроби - совместные вероятности, записанные в соответствующих строках колонки 4, а знаменатель - полная вероятность события A, записанная в последней строке колонки 4.
Сумма вероятностей гипотез после опыта равна 1 и записана в последней строке пятой колонки.
Итак, вероятность того, что бракованная деталь была получена от первого поставщика, равна 0.555. Послеопытная вероятность больше априорной (за счет большого объема поставки). Послеопытная вероятность того, что бракованная деталь была получена от второго поставщика, равна 0.278 и также больше доопытной (за счет большого количества брака). Послеопытная вероятность того, что бракованная деталь была получена от третьего поставщика, равна 0.167.

Пример №3 . Имеются три одинаковые урны; в первой урне два белых и один черный шар; во второй - три белых и один черный; в третьей - два белых и два черных шара. Для опыта наугад выбрана одна урна и из нее вынут шар. Найдите вероятность того, что этот шар белый.
Решение. Рассмотрим три гипотезы: H 1 - выбрана первая урна, H 2 - выбрана вторая урна, H 3 - выбрана третья урна и событие A - вынут белый шар.
Так как гипотезы по условию задачи равновозможны, то

Условные вероятности события A при этих гипотезах соответственно равны:
По формуле полной вероятности

Пример №4 . В пирамиде стоят 19 винтовок, из них 3 с оптическим прицелом. Стрелок, стреляя из винтовки с оптическим прицелом, может поразить мишень с вероятностью 0,81, а стреляя из винтовки без оптического прицела, - с вероятностью 0,46. Найдите вероятность того, что стрелок поразит мишень, стреляя из случайно взятой винтовки.
Решение. Здесь первым испытанием является случайный выбор винтовки, вторым - стрельба по мишени. Рассмотрим следующие события: A - стрелок поразит мишень; H 1 - стрелок возьмет винтовку с оптическим прицелом; H 2 - стрелок возьмет винтовку без оптического прицела. Используем формулу полной вероятности. Имеем


Учитывая, что винтовки выбираются по одной, и используя формулу классической вероятности, получаем: P(H 1) = 3/19, P(H 2) = 16/19.
Условные вероятности заданы в условии задачи: P(A|H 1) = 0;81 и P(A|H 2) = 0;46. Следовательно,

Пример №5 . Из урны, содержащей 2 белых и 3 черных шара, наудачу извлекаются два шара и добавляется в урну 1 белый шар. Найдите вероятность того, что наудачу взятый шар окажется белым.
Решение. Событие “извлечен белый шар” обозначим через A. Событие H 1 - наудачу извлекли два белых шара; H 2 - наудачу извлекли два черных шара; H 3 - извлекли один белый шар и один черный. Тогда вероятности выдвинутых гипотез


Условные вероятности при данных гипотезах соответственно равны: P(A|H 1) = 1/4 - вероятность извлечь белый шар, если в урне в данный момент один белый и три черных ша-ра, P(A|H 2) = 3/4 - вероятность извлечь белый шар, если в урне в данный момент три белых и один черный шар, P(A|H 3) = 2/4 = 1/2 - вероятность извлечь белый шар, если в урне в данный момент два белых и два черных шара. В соответствии с формулой полной вероятности

Пример №6 . Производится два выстрела по цели. Вероятность попадания при первом выстреле 0,2, при втором - 0,6. Вероятность разрушения цели при одном попадании 0,3, при двух - 0,9. Найдите вероятность того, что цель будет разрушена.
Решение. Пусть событие A - цель разрушена. Для этого достаточно попадания с одного выстрела из двух или поражение цели подряд двумя выстрелами без промахов. Выдвинем гипотезы: H 1 - оба выстрела попали в цель. Тогда P(H 1) = 0,2 · 0,6 = 0;12. H 2 - либо первый раз, либо второй раз был совершен промах. Тогда P(H 2) = 0,2 · 0,4 + 0,8 · 0,6 = 0,56. Гипотеза H 3 - оба выстрела были промахи - не учитывается, так как вероятность разрушения цели при этом нулевая. Тогда условные вероятности соответственно равны: вероятность разрушения цели при условии обоих удачных выстрелов равна P(A|H 1) = 0,9, а вероятность разрушения цели при условии только одного удачного выстрела P(A|H 2) = 0,3. Тогда вероятность разрушения цели по формуле полной вероятности равна.

Измена мужа