Квадратичная функция и ее график. График функции

Функция вида , где называется квадратичной функцией .

График квадратичной функциипарабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Учебник:

  • Макарычев Ю. Н., Миндюк Н. Р. Математика. 7 класс

Цели:

  • формировать графическую грамотность при построении графиков,
  • формировать навык исследовательской работы,
  • воспитывать четкость при ответе, аккуратность, ответственность.
  • I. Опрос учащихся

    1. Что называется функцией?
    2. (Функцией называется зависимость одной переменной от другой, при которой каждому значению независимой переменной соответствует единственное значение зависимой переменной )

    3. Что называется областью определения функции?
    4. (Все значения, которые принимает независимая переменная (аргумент), .образуют область определения функции)

    5. Что называется областью значений функции?
    6. (Все значения, которые принимает зависимая переменная, называются значениями функции)

    7. С какими функциями мы с вами познакомились?
    8. а) с линейной функцией вида у = кх + b ,

      прямой пропорциональностью вида у = кх

      б) с функциями вида у = х 2 , у = х 3

    9. Что представляет из себя график линейной функции? (прямая ). Сколько точек необходимо для построения данного графика?

    Не выполняя построения, определите взаимное расположение графиков функций, заданных следующими формулами:

    а) у = Зх + 2; у = 1,2х + 5;

    b) y = 1,5х + 4; у = -0,2х + 4; у = х + 4;

    с) у = 2х + 5; у = 2х - 7; у = 2х

    Рисунок 1

    На рисунке изображены графики линейных функций (каждому ученику на парту выдается листок с построенными графиками ). Напишите формулу для каждого графика

    С графиками каких функций мы с вами ещё знакомы? (у = х 2 ; у = х 3 )

    1. Что является графиком функции у = х 2 (парабола ).
    2. Сколько точек нам необходимо построить для изображения параболы? (7, одна из которых является вершиной параболы ).

    Давайте построим параболу, заданную формулой у = х 2

    x -3 -2 -1 0 1 2 3
    у = х 2 9 4 1 0 1 4 9
    у = х 2 + 2 11 6 3 2 3 6 11

    Рисунок 2

    Какими свойствами обладает график функции у = х 3 ?

    1. Если х = 0 , то у = 0 - вершина параболы (0;0)
    2. Область определения: х - любое число, Д(у) = (- ?; ?) Д(у) = R
    3. Область значений у ? 0
    4. E(y) =
    5. Функция возрастает на промежутке

      Функция возрастает на промежутке

      Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

      Развод