Основание и их свойства. Основания, их классификация и свойства

ОПРЕДЕЛЕНИЕ

Гидроксидами называются сложные вещества, в состав которых входят атомы металлов, соединенные с одной или несколькими гидроксогруппами.

Большинство оснований - твердые вещества с различной растворимостью в воде. Гидроксид меди (II) голубого цвета (рис. 1), гидроксид железа (III) бурого, большинство других белого цвета.

Рис. 1. Гидроксид меди (II). Внешний вид.

Получение гидроксидов

Растворимые основания (щелочи) в лаборатории можно получить при взаимодействии активных металлов и их оксидов с водой:

CaO + H 2 O = Ca(OH) 2 .

Щелочи гидроксид натрия и гидроксид кальция получают электролизом водных растворов хлорида натрия и хлорида калия.

Нерастворимые в воде основания получают по реакции солей с щелочами в водных растворах:

FeCl 3 + 3NaOH aq = Fe(OH) 3 ↓ + 3NaCl.

Химические свойства гидроксидов

Растворимые и нерастворимые основания имеют общее свойства: они реагируют с кислотами с образованием солей и воды (реакция нейтрализации):

NaOH + HCl = NaCl + H 2 O;

Cu(OH) 2 + 2HCl = CuCl 2 + H 2 O.

Растворы щелочей изменяют цвет некоторых веществ - лакмуса, фенолфталеина и метилового оранжевого, называемых индикаторами (табл. 1).

Таблица 1. Изменение цвета индикаторов под воздействием растворов кислот и оснований.

Кроме общего свойства, щелочи и нерастворимые в воде основания обладают также специфическими. Например, при нагревании голубого осадка гидроксида меди (II) образуется вещество черного цвета - это оксид меди (II):

Cu(OH) 2 = CuO + H 2 O.

Щелочи, в отличие от нерастворимых оснований, при нагревании обычно не разлагаются. Их растворы действуют на индикаторы, разъедают органические вещества, реагируют с растворами солей (если в их состав входит металл, способный образовать нерастворимое основание) и кислотными оксидами:

Fe 2 (SO 4) 3 + 6KOH = 2Fe(OH) 3 ↓ + 3K 2 SO 4 ;

2KOH + CO 2 = K 2 CO 3 + H 2 O.

Применение гидроксидов

Гидроксиды находят широкое применение в промышленности и быту. Например, большое значение имеет гидроксид кальция. Это белый рыхлый порошок. При смешивании его с водой образуется так называемое известковое молоко. Так как гидроксид кальция немного растворяется в воде, то после отфильтровывания известкового молока получается прозрачный раствор - известковая вода, которая мутнеет при пропускании через неё диокисда углерода. Гашеную известь применяют дляприготовления бордосской смеси -средства борьбы с болезнями и вредителями растений. Известковое молоко широко используют в химической промышленности, например при производстве сахара, соды и других веществ.

Гидроксид натрия применяют для очистки нефти, производства мыла, в текстильной промышленности. Гидроксид калия и гидроксид лития используют в аккумуляторах.

Примеры решения задач

ПРИМЕР 1

Задание В одном из гидроксидов олова массовая доля элементов равна: олова - 63,6%; кислорода - 34,2%; водорода - 2,2%. Определите формулу этого гидроксида.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (олово), «у» (кислород) и «z» (водород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(Sn)/Ar(Sn) : ω(O)/Ar(O) : ω(H)/Ar(H);

x:y:z = 63,6/119: 34,2/16: 2,1/1;

x:y:z = 0,53: 2,14: 2,1 = 1: 4: 4.

Значит формула гидроксида олова имеет вид Sn(OH) 4 .

Ответ Формула гидроксида олова имеет вид Sn(OH) 4

ПРИМЕР 2

Задание Определите массовую долю гидроксида бария в растворе, полученном при смешивании воды массой 50 г и оксида бария массой 1,2 г.
Решение Массовая доля вещества Х в растворе рассчитывается по следующей формуле:

ω (Х) = m(X) / m solution × 100%.

Масса раствора складывается из масс растворенного вещества и растворителя:

m solution = m(H 2 O) + m(BaO) = 50 + 1,2 = 51,2 г.

Запишем уравнение реакции получения гидроксида бария:

BaO + H 2 O = Ba(OH) 2 .

Рассчитаем количества моль исходных веществ:

n(H 2 O) = m(H 2 O) / M(H 2 O);

M(H 2 O) = 18 г/моль;

n(H 2 O) = 50 / 18 = 2,8 моль.

n(BaO) = m(BaO) / M(BaO);

M(BaO) = 153 г/моль;

n(BaO) = 1,2 / 153 = 0,008 моль.

Расчет ведем по соединению, находящемуся в недостатке (оксид бария). Согласно уравнению

n(BaO) :n(Ba(OH) 2) = 1:1, т.е. n(Ba(OH) 2) = n(BaO) = 1,04 моль.

Тогда масса образовавшегося гидроксида бария будет равна:

m(Ba(OH) 2) = n(Ba(OH) 2) × M(Ba(OH) 2);

M(Ba(OH) 2) = 171 г/моль;

m(Ba(OH) 2) = 0,008 ×171 = 1,368 г.

Найдем массовую долю гидроксида бария в растворе:

ω (Ba(OH) 2) = 1,368 / 51,2 × 100% = 2,67%.

Ответ Массовая доля гидроксида бария равна 2,67%

Основания представляют собой сложные соединения, включающие два основных структурных компонента:

  1. Гидроксогруппа (одна или несколько). Отсюда, кстати и второе название этих веществ - «гидроксиды».
  2. Атом металла или ион аммония (NH4+).

Название оснований происходит из объединения наименований обоих его компонентов: например, гидроксид кальция, гидроксид меди, гидроксид серебра и т. д.

Единственным исключением из общего правила образования оснований следует считать когда гидроксогруппа присоединяется не к металлу, а к катиону аммония (NH4+). Это вещество образуется в том случае, когда происходит растворение в воде аммиака.

Если говорить о свойствах оснований, то сразу следует отметить, что валентность гидроксогруппы равна единице, соответственно, количество этих групп в молекуле будет напрямую зависеть от того, какой валентностью обладают вступающие в реакцию металлы. Примерами в данном случае могут служить формулы таких веществ, как NaOH, Al(OH)3, Ca(OH)2.

Химические свойства оснований проявляются в их реакциях с кислотами, солями, другими основаниями, а также в их действии на индикаторы. В частности, щелочи можно определить, если воздействовать их раствором на определенный индикатор. В этом случае он заметно поменяет свою окраску: например, из белой станет синей, а фенолфталеин - малиновым.

Химические свойства оснований, проявляясь в их взаимодействии с кислотами, приводят к знаменитым реакциям нейтрализации. Суть такой реакции в том, что атомы металла, присоединяясь к кислотному остатку, образуют соль, а гидроксогруппа и ион водорода, соединяясь, превращаются в воду. Реакцией нейтрализации эта реакция называется потому, что после нее не остается ни щелочи, ни кислоты.

Характерные химические свойства оснований проявляются и в их реакции с солями. При этом стоит отметить, что с растворимыми солями в реакцию вступают только щелочи. Особенности строения этих веществ приводят к тому, что в результате реакции образуется новая соль и новое, чаще всего нерастворимое, основание.

Наконец, химические свойства оснований прекрасно проявляют себя во время термического воздействия на них - нагревания. Здесь, осуществляя те или иные опыты, стоит иметь в виду, что практически все основания, за исключением щелочей, при нагревании ведут себя крайне неустойчиво. Подавляющее их большинство почти мгновенно распадается на соответствующий оксид и воду. А если взять основания таких металлов, как серебро и ртуть, то в нормальных условиях они не могут быть получены, так как начинают распадаться уже при комнатной температуре.

Однокислотные (NaOH , КОН, NH 4 OH и др.);


Двухкислотные (Са(ОН) 2 , Cu(OH) 2 , Fe(OH) 2 ;


Трехкислотные (Ni(OH) 3 , Со(ОН) 3 , Мn(ОН) 3 .

Классификация по растворимости в воде и степени ионизации:

Растворимые в воде сильные основания,


например:


щелочи - гидроксиды щелочных и щелоч­ноземельных металлов LiOH - гидроксид лития, NaOH - гидроксид натрия (едкий натр), КОН - гадроксид калия (едкое кали), Ва(ОН) 2 - гидроксид бария;


Нерастворимые в воде сильные основания,


например:


Сu(ОН) 2 - гидроксид меди (II), Fe(OH) 2 - гидроксид железа (II), Ni(OH) 3 - гидроксид никеля (III).

Химические свойства

1. Действие на индикаторы


Лакмус - синий;

Метилоранж - жёлтый,

Фенолфталеин - малиновый.


2. Взаимодействие с кислотными оксидами


2KOH + CO 2 = K 2 CO 3 + H 2 O


KOH + CO 2 = KHCO 3


3. Взаимодействие с кислотами (реакция нейтрализации)


NaOH + HNO 3 = NaNO 3 + H 2 O; Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O


4. Обменная реакция с солями


Ba(OH) 2 + K 2 SO 4 = 2KOH + BaSO 4


3KOH + Fe(NO 3) 3 = Fe(OH) 3 + 3KNO 3


5. Термический распад


Cu(OH) 2 t = CuO + H 2 O; 2 CuOH = Cu 2 O + Н 2 O


2Со(ОН) 3 = Со 2 O 3 + ЗН 2 O; 2АgОН = Аg 2 O + Н 2 O


6. Гидроксиды, в которых d-металлы имеют низкие с. о., способны окисляться кислоро­дом воздуха,


например:


4Fe(OH) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3


2Мn(OН) 2 + O 2 + 2Н 2 O = 2Мn(ОН) 4


7. Растворы щелочей взаимодействуют c амфотерными гидроксидами:


2КОН + Zn(OH) 2 = К 2


2КОН + Al 2 O 3 + ЗН 2 O = 2К


8. Растворы щелочей взаимодействуют с ме­таллами, образующими амфотерные оксиды игидроксиды (Zn , AI и др.),


например:


Zn + 2 NaOH +2Н 2 O = Na 2 + Н 2


2AI +2КOН + 6Н 2 O= 2КAl(ОН) 4 ] + 3H 2


9. В растворах щелочей некоторые неметаллы диспропорционируют,


например:


Cl 2 + 2NaOH = NaCl + NaCIO + Н 2 O


3S+ 6NaOH = 2Na 2 S+ Na 2 SO 3 + 3H 2 O


4P+ 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2


10. Растворимые основания широко использу­ются в реакциях щелочного гидролиза раз­личных органических соединений (галогенопроизводных углеводородов, сложных эфиров, жиров и др.),


например:


C 2 H 5 CI + NaOH = С 2 Н 5 ОН + NaCl

Способы получения щелочей и нерастворимых оснований

1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:


2Na + 2H 2 O = 2 NaOH + H 2


Ca + 2H 2 O = Ca(OH) 2 + H 2


2. Взаимодействие оксидов активных металлов с водой:


BaO + H 2 O = Ba(OH) 2


3. Электролиз водных растворов солей:


2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2


CaCI 2 + 2Н 2 O = Са(ОН) 2 +Н 2 + Cl 2


4. Осаждение из растворов соответствующих солей щелочами:


CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4


FeCI 3 + 3KOH = Fe(OH) 3 + 3KCI

Один из классов сложных неорганических веществ - основания. Это соединения, включающие атомы металла и гидроксильную группу, которая может отщепляться при взаимодействии с другими веществами.

Строение

Основания могут содержать одну или несколько гидроксо-групп. Общая формула оснований - Ме(ОН) х. Атом металла всегда один, а количество гидроксильных групп зависит от валентности металла. При этом валентность группы ОН всегда I. Например, в соединении NaOH валентность натрия равна I, следовательно, присутствует одна гидроксильная группа. В основании Mg(OH) 2 валентность магния - II, Al(OH) 3 валентность алюминия - III.

Количество гидроксильных групп может меняться в соединениях с металлами с переменной валентностью. Например, Fe(OH) 2 и Fe(OH) 3 . В таких случаях валентность указывается в скобках после названия - гидроксид железа (II), гидроксид железа (III).

Физические свойства

Характеристика и активность основания зависит от металла. Большинство оснований - твёрдые вещества белого цвета без запаха. Однако некоторые металлы придают веществу характерную окраску. Например, CuOH имеет жёлтый цвет, Ni(OH) 2 - светло-зелёный, Fe(OH) 3 - красно-коричневый.

Рис. 1. Щёлочи в твёрдом состоянии.

Виды

Основания классифицируются по двум признакам:

  • по количеству групп ОН - однокислотные и многокислотные;
  • по растворимости в воде - щёлочи (растворимые) и нерастворимые.

Щёлочи образуются щелочными металлами - литием (Li), натрием (Na), калием (K), рубидием (Rb) и цезием (Cs). Кроме того, к активным металлам, образующим щёлочи, относят щелочноземельные металлы - кальций (Ca), стронций (Sr) и барий (Ba).

Эти элементы образуют следующие основания:

  • LiOH;
  • NaOH;
  • RbOH;
  • CsOH;
  • Ca(OH) 2 ;
  • Sr(OH) 2 ;
  • Ba(OH) 2 .

Все остальные основания, например, Mg(OH) 2 , Cu(OH) 2 , Al(OH) 3 , относятся к нерастворимым.

По-другому щёлочи называются сильными основаниями, а нерастворимые - слабыми основаниями. При электролитической диссоциации щёлочи быстро отдают гидроксильную группу и быстрее вступают в реакцию с другими веществами. Нерастворимые или слабые основания менее активные, т.к. не отдают гидроксильную группу.

Рис. 2. Классификация оснований.

Особое место в систематизации неорганических веществ занимают амфотерные гидроксиды. Они взаимодействуют и с кислотами, и с основаниями, т.е. в зависимости от условий ведут себя как щёлочь или как кислота. К ним относятся Zn(OH) 2 , Al(OH) 3 , Pb(OH) 2 , Cr(OH) 3 , Be(OH) 2 и другие основания.

Получение

Основания получают различными способами. Самый простой - взаимодействие металла с водой:

Ba + 2H 2 O → Ba(OH) 2 + H 2 .

Щёлочи получают в результате взаимодействия оксида с водой:

Na 2 O + H 2 O → 2NaOH.

Нерастворимые основания получаются в результате взаимодействия щелочей с солями:

CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 .

Химические свойства

Основные химические свойства оснований описаны в таблице.

Реакции

Что образуется

Примеры

С кислотами

Соль и вода. Нерастворимые основания взаимодействуют только с растворимыми кислотами

Cu(OH) 2 ↓ + H 2 SO 4 → CuSO 4 +2H 2 O

Разложение при высокой температуре

Оксид металла и вода

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

С кислотными оксидами (реагируют щёлочи)

NaOH + CO 2 → NaHCO 3

С неметаллами (вступают щёлочи)

Соль и водород

2NaOH + Si + H 2 O → Na 2 SiO 3 +H 2

Обмена с солями

Гидроксид и соль

Ba(OH) 2 + Na 2 SO 4 → 2NaOH + BaSO 4 ↓

Щелочей с некоторыми металлами

Сложная соль и водород

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

С помощью индикатора проводится тест на определение класса основания. При взаимодействии с основанием лакмус становится синим, фенолфталеин - малиновым, метилоранж - жёлтым.

Рис. 3. Реакция индикаторов на основания.

Что мы узнали?

Из урока 8 класса химии узнали об особенностях, классификации и взаимодействии оснований с другими веществами. Основания - сложные вещества, состоящие из металла и гидроксильной группы ОН. Они делятся на растворимые или щёлочи и нерастворимые. Щёлочи - более агрессивные основания, быстро реагирующие с другими веществами. Основания получают при взаимодействии металла или оксида металла с водой, а также в результате реакции соли и щёлочи. Основания реагируют с кислотами, оксидами, солями, металлами и неметаллами, а также разлагаются при высокой температуре.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 135.

Развод