Свойства параллельных прямых. Параллельные прямые

Страница 1 из 2

Вопрос 1. Докажите, что две прямые, параллельные третьей, параллельны.
Ответ. Теорема 4.1. Две прямые, параллельные третьей, параллельны.
Доказательство. Пусть прямые a и b параллельны прямой c. Допустим, что a и b не параллельны (рис. 69). Тогда они не пересекаются в некоторой точке C. Значит, через точку C проходят две прямые, параллельные прямой c. Но это невозможно, так как через точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной. Теорема доказана.

Вопрос 2. Объясните, какие углы называются внутренними односторонними. Какие углы называются внутренними накрест лежащими?
Ответ. Пары углов, которые образуются при пересечении прямых AB и CD секущей AC, имеют специальные названия.
Если точки B и D лежат в одной полуплоскости относительно прямой AC, то углы BAC и DCA называются внутренними односторонними (рис. 71, а).
Если точки B и D лежат в разных полуплоскостях относительно прямой AC, то углы BAC и DCA называются внутренними накрест лежащими (рис. 71, б).


Рис. 71

Вопрос 3. Докажите, что если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны, а сумма внутренних односторонних углов каждой пары равна 180°.
Ответ. Секущая AC образует с прямыми AB и CD две пары внутренних односторонних и две пары внутренних накрест лежащих углов. Внутренние накрест лежащие углы одной пары, например угол 1 и угол 2, являются смежными внутренним накрест лежащим углам другой пары: угол 3 и угол 4 (рис. 72).


Рис. 72

Поэтому если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары тоже равны.
Пара внутренних накрест лежащих углов, например угол 1 и угол 2, и пара внутренних односторонних углов, например угол 2 и угол 3, имеют один угол общий – угол 2, а два других угла смежные: угол 1 и угол 3.
Поэтому если внутренние накрест лежащие углы равны, то сумма внутренних углов равна 180°. И обратно: если сумма внутренних накрест лежащих углов равна 180°, то внутренние накрест лежащие углы равны. Что и требовалось доказать.

Вопрос 4. Докажите признак параллельности прямых.
Ответ. Теорема 4.2 (признак параллельности прямых). Если внутренние накрест лежащие углы равны или сумма внутренних односторонних углов равна 180°, то прямые параллельны.
Доказательство. Пусть прямые a и b образуют с секущей AB равные внутренние накрест лежащие углы (рис. 73, а). Допустим, прямые a и b не параллельны, а значит, пересекаются в некоторой точке C (рис. 73, б).


Рис. 73

Секущая AB разбивает плоскость на две полуплоскости. В одной из них лежит точка C. Построим треугольник BAC 1 , равный треугольнику ABC, с вершиной C 1 в другой полуплоскости. По условию внутренние накрест лежащие углы при параллельных a, b и секущей AB равны. Так как соответствующие углы треугольников ABC и BAC 1 с вершинами A и B равны, то они совпадают с внутренними накрест лежащими углами. Значит, прямая AC 1 совпадает с прямой a, а прямая BC 1 совпадает с прямой b. Получается, что через точки C и C 1 проходят две различные прямые a и b. А это невозможно. Значит, прямые a и b параллельны.
Если у прямых a и b и секущей AB сумма внутренних односторонних углов равна 180°, то, как мы знаем, внутренние накрест лежащие углы равны. Значит, по доказанному выше, прямые a и b параллельны. Теорема доказана.

Вопрос 5. Объясните, какие углы называются соответственными. Докажите, что если внутренние накрест лежащие углы равны, то соответственные углы тоже равны, и наоборот.

Ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: \(\angle\)1 = \(\angle\)2 и \(\angle\)2 = \(\angle\)3. По свойству транзитивности знака равенства следует, что \(\angle\)1 = \(\angle\)3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.

Вопрос 6. Докажите, что через точку, не лежащую на данной прямой, можно провести параллельную ей прямую. Сколько прямых, параллельных данной, можно провести через точку, не лежащую на этой прямой?

Ответ. Задача (8). Даны прямая AB и точка C, не лежащая на этой прямой. Докажите, что через точку C можно провести прямую, параллельную прямой AB.
Решение. Прямая AC разбивает плоскость на две полуплоскости (рис. 75). Точка B лежит в одной из них. Отложим от полупрямой CA в другую полуплоскость угол ACD, равный углу CAB. Тогда прямые AB и CD будут параллельны. В самом деле, для этих прямых и секущей AC углы BAC и DCA внутренние накрест лежащие. А так как они равны, то прямые AB и CD параллельны. Что и требовалось доказать.
Сопоставляя утверждение задачи 8 и аксиомы IX (основного свойства параллельных прямых), приходим к важному выводу: через точку, не лежащую на данной прямой, можно провести параллельную ей прямую, и только одну.

Вопрос 7. Докажите, что если две прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.

Ответ. Теорема 4.3 (обратная теореме 4.2). Если две параллельные прямые пересекаются третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.
Доказательство. Пусть a и b – параллельные прямые и c – прямая, пересекающая их в точках A и B. Проведём через точку A прямую a 1 так, чтобы внутренние накрест лежащие углы, образованные секущей c с прямыми a 1 и b, были равны (рис. 76).
По признаку параллельности прямых прямые a 1 и b параллельны. А так как через точку A проходит только одна прямая, параллельная прямой b, то прямая a совпадает с прямой a 1 .
Значит, внутренние накрест лежащие углы, образованные секущей с
параллельными прямыми a и b, равны. Теорема доказана.

Вопрос 8. Докажите, что две прямые, перпендикулярные третьей, параллельны. Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой.
Ответ. Из теоремы 4.2 следует, что две прямые, перпендикулярные третьей, параллельны.
Предположим, что две какие-либо прямые перпендикулярны третьей прямой. Значит, эти прямые пересекаются с третьей прямой под углом, равным 90°.
Из свойства углов, образованных при пересечении параллельных прямых секущей, следует, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Вопрос 9. Докажите, что сумма углов треугольника равна 180°.

Ответ. Теорема 4.4. Сумма углов треугольника равна 180°.
Доказательство. Пусть ABC – данный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по по разные стороны от прямой BC (рис. 78).
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и C равна углу ABD.
А сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD и секущей AB, то их сумма равна 180°. Теорема доказана.

Вопрос 10. Докажите, что у любого треугольника по крайней мере два угла острые.
Ответ. Действительно, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть два угла, каждый из которых не меньше 90°. Сумма этих двух углов уже не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°. Что и требовалось доказать.

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.

Цели занятия: На этом занятии вы познакомитесь с понятием «параллельные прямые», узнаете, как можно убедиться в параллельности прямых, а также, какими свойствами обладают углы, образованные параллельными прямыми и секущей.

Параллельные прямые

Вы знаете, что понятие «прямая» относится к числу так называемых неопределяемых понятий геометрии.

Вы уже знаете, что две прямые могут совпадать, то есть иметь все общие точки, могут пересекаться, то есть иметь одну общую точку. Пересекаются прямые под разными углами, при этом углом между прямыми считают наименьших из углов, которые ими образованы. Частным случаем пересечения можно считать случай перпендикулярности, когда угол, образованный прямыми, равен 90 0 .

Но две прямые могут и не иметь общих точек, то есть не пересекаться. Такие прямые называются параллельными .

Поработайте с электронным образовательным ресурсом « ».

Чтобы познакомиться с понятием «параллельные прямые», поработайте в материалами видеоурока

Таким образом, теперь вы знаете определение параллельных прямых.

Из материалов фрагмента видеоурока вы узнали о различных видах углов, которые образуются при пересечении двух прямых третьей.

Пары углов 1 и 4; 3 и 2 называют внутренними односторонними углами (они лежат между прямыми a и b ).

Пары углов 5 и 8; 7 и 6 называют внешними односторонними углами (они лежат вне прямых a и b ).

Пары углов 1 и 8; 3 и 6; 5 и 4; 7 и 2 называют односторонними углами при прямых a и b и секущей c . Как вы видите, из пары соответственных углов один лежит между прямым a и b , а другой вне их.

Признаки параллельности прямых

Очевидно, что пользуясь определением сделать вывод о параллельности двух прямых невозможно. Поэтому для того чтобы сделать заключение о том, что две прямые параллельны, пользуются признаками .

Один из них вы уже можете сформулировать, познакомившись с материалами первой части видеоурока:

Теорема 1 . Две прямые, перпендикулярные третьей, не пересекаются, то есть параллельны.

С другими признаками параллельности прямых на основе равенства определенных пар углов вы познакомитесь, поработав с материалами второй части видеоурока «Признаки параллельности прямых».

Таким образом, вы должны знать еще три признака параллельности прямых.

Теорема 2 (первый признак параллельности прямых) . Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Рис. 2. Иллюстрация к первому признаку параллельности прямых

Еще раз повторите первый признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

Таким образом, при доказательстве первого признака параллельности прямых используется признак равенства треугольников (по двум сторонам и углу между ними), а также признак параллельности прямых как перпендикулярных одной прямой.

Задание 1.

Запишите формулировку первого признака параллельности прямых и ее доказательство в свои тетради.

Теорема 3 (второй признак параллельности прямых) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Еще раз повторите второй признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

При доказательстве второго признака параллельности прямых используется свойство вертикальных углов и первый признак параллельности прямых.

Задание 2.

Запишите формулировку второго признака параллельности прямых и ее доказательство в свои тетради.

Теорема 4 (третий признак параллельности прямых) . Если при пересечении двух прямых секущей сумма односторонних углов равна 180 0 , то прямые параллельны.

Еще раз повторите третий признак параллельности прямых, поработав с электронным образовательным ресурсом « ».

Таким образом, при доказательстве первого признака параллельности прямых используется свойство смежных углов и первый признак параллельности прямых.

Задание 3.

Запишите формулировку третьего признака параллельности прямых и ее доказательство в свои тетради.

Для того чтобы потренироваться в решении простейших задач, поработайте с материалами электронного образовательного ресурса « ».

Признаки параллельности прямых используются при решении задач.

Теперь рассмотрите примеры решения задач на признаки параллельности прямых, поработав с материалами видеоурока «Решение задач по теме «Признаки параллельности прямых».

А теперь проверьте себя, выполнив задания контрольного электронного образовательного ресурса « ».

Тот, кто хочет поработать с решением более сложных задач, может поработать с материалами видеоурока «Задачи на признаки параллельности прямых».

Свойства параллельных прямых

Параллельные прямые обладают набором свойств.

Вы узнаете, какие это свойства, поработав с материалами видеоурока «Свойства параллельных прямых».

Таким, образом, важным фактом, который вы должны знать, является аксиома параллельности.

Аксиома параллельности . Через точку, не лежащую на данной прямой, можно провести прямую , параллельную данной, и притом только одну.

Как вы узнали из материалов видеоурока, опираясь на эту аксиому, можно сформулировать два следствия.

Следствие 1. Если прямая пересекает одну из параллельных прямых, то она пересекает и другую параллельную прямую .

Следствие 2. Если две прямые параллельны третьей, то они параллельны между собой.

Задание 4.

Запишите формулировку сформулированных следствий и их доказательства в свои тетради.

Свойства углов, образованных параллельными прямыми и секущей являются теоремами, обратными соответствующим признакам.

Так, из материалов видеоурока вы узнали свойство накрест лежащих углов.

Теорема 5 (теорема , обратная первому признаку параллельности прямых) . При пересечении двух параллельных прямых секущей накрест лежащие углы равны.

Задание 5.

Еще раз повторите первое свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Теорема 6 (теорема , обратная второму признаку параллельности прямых) . При пересечении двух параллельных прямых соответственные углы равны.

Задание 6.

Запишите формулировку данной теоремы и ее доказательство в свои тетради.

Еще раз повторите второе свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Теорема 7 (теорема , обратная третьему признаку параллельности прямых) . При пересечении двух параллельных прямых сумма односторонних углов равна 180 0 .

Задание 7.

Запишите формулировку данной теоремы и ее доказательство в свои тетради.

Еще раз повторите третье свойство параллельных прямых, поработав с электронным образовательным ресурсом « ».

Все свойства параллельных прямых также используются при решении задач.

Рассмотрите типичные примеры решения задач, поработав с материалами видеоурока «Параллельные прямые и задачи на углы между ними и секущей».

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Бывшие