Где протоны и нейтроны. Строение атомов - элементарные частицы вещества, электроны, протоны, нейтроны

Поговорим о том, как найти протоны, нейтроны и электроны. В атоме существует три вида элементарных частиц, причем у каждой есть свой элементарный заряд, масса.

Строение ядра

Для того чтобы понять, как найти протоны, нейтроны и электроны, представим Оно является основной частью атома. Внутри ядра располагаются протоны и нейтроны, именуемые нуклонами. Внутри ядра эти частицы могут переходить друг в друга.

Например, чтобы найти протоны, нейтроны и электроны в необходимо знать его порядковый номер. Если учесть, что именно этот элемент возглавляет периодическую систему, то в его ядре содержится один протон.

Диаметр атомного ядра составляет десятитысячную долю всего размера атома. В нем сосредоточена основная масса всего атома. По массе ядро превышает в тысячи раз сумму всех электронов, имеющихся в атоме.

Характеристика частиц

Рассмотрим, как найти протоны, нейтроны и электроны в атоме, и узнаем об их особенностях. Протон - это которая соответствует ядру атома водорода. Его масса превышает электрон в 1836 раз. Для определения единицы электричества, проходящего через проводник с заданным поперечным сечением, используют электрический заряд.

У каждого атома в ядре располагается определенное количество протонов. Оно является постоянной величиной, характеризует химические и физические свойства данного элемента.

Как найти протоны, нейтроны и электроны в атоме углерода? Порядковый номер данного химического элемента 6, следовательно, в ядре содержится шесть протонов. Согласно планетарной вокруг ядра по орбитам движется шесть электронов. Для определения количество нейтронов из значения углерода (12) вычитаем количество протонов (6), получаем шесть нейтронов.

Для атома железа число протонов соответствует 26, то есть этот элемент имеет 26-й порядковый номер в таблице Менделеева.

Нейтрон является электрически нейтральной частицей, нестабильной в свободном состоянии. Нейтрон способен самопроизвольно превращаться в положительно заряженный протон, испуская при этом антинейтрино и электрон. Средний период его полураспада составляет 12 минут. Массовое число - это суммарное значение количества протонов и нейтронов внутри ядра атома. Попробуем выяснить, как найти протоны, нейтроны и электроны в ионе? Если атом во время химического взаимодействия с другим элементом приобретает положительную степень окисления, то число протонов и нейтронов в нем не изменяется, меньше становится только электронов.

Заключение

Существовало несколько теорий, касающихся строения атома, но ни одна из них не была жизнеспособной. До версии, созданной Резерфордом, не было детального пояснения о расположении внутри ядра протонов и нейтронов, а также о вращении по круговым орбитам электронов. После появления теории планетарного строения атома у исследователей появилась возможность не только определять количество элементарных частиц в атоме, но и предсказывать физические и химические свойства конкретного химического элемента.

Протоны и нейтроны

Все окружающие нас предметы состоят из молекул, которые, в свою очередь, образуются из атомов, то есть мельчайших частиц химических элементов. Несмотря на исключительно малые размеры, атомы представляют собой весьма сложные образования, включающие центральное тяжелое ядро и легкую оболочку из электронов, число которых обычно равно порядковому номеру элемента в менделеевской периодической системе. В ядре сосредоточена почти вся масса атома. Оно также имеет очень сложное строение. Основными «кирпичиками», из которых построены ядра, являются протоны и нейтроны.
Протон - это ядро атома водорода, самого легкого химического элемента, занимающего в таблице Д. И. Менделеева первое место и в соответствии с этим имеющего в электронной оболочке всего лишь один электрон. Если ионизовать атом водорода, то есть удалить его единственный электрон, то останется ядро, которое из-за отсутствия оболочки можно назвать «голым» ядром и которое как раз и будет протоном (от греческого слова «протос» - первый).
Протон - положительно заряженная частица, причем заряд его по величине в точности равен заряду электрона. Масса протона выражается цифрой в 1,6-10 -24 грамма. Это значит, что масса тысячи миллионов протонов в 10 тысяч раз меньше одной стомиллионной доли миллиграмма. И все же эта «элементарная» частица относится к разряду «тяжелых», ибо масса ее в 1836,6 раза больше массы электрона. Очень невелики и размеры протона: его диаметр в 100 тысяч раз меньше диаметра атома, равного примерно одной стомиллионной сантиметра. Вследствие этого плотность вещества протона, несмотря на его ничтожно малую массу, огромна. Если бы кубик с ребром в 1 миллиметр удалось наполнить этими частицами так, чтобы они целиком заняли весь объем, касаясь друг друга, то такой кубик весил бы 120 тысяч тонн! Конечно, в действительности осуществить подобный эксперимент нельзя. Протоны, будучи одноименно заряженными частицами, отталкиваются друг от друга, и нужны колоссальные силы, чтобы сблизить их. Однако есть звезды, на которых существуют условия, благоприятные для сравнительно близкого подхода протонов друг к другу. Эти звезды (например, звезда ванн - Маанена в созвездии Рыб) отличаются чрезвычайно высокой плотностью вещества, хотя она, разумеется, в миллионы раз меньше, чем в рассмотренном нами случае кубика, состоящего из одних протонов.
Тот факт, что в состав атомных ядер входят протоны, был доказан в результате опытов, проведенных в 1919 году английским физиком Резерфордом. В этих опытах он использовал поток быстрых альфа - частиц (то есть ядер атомов гелия), образующихся в процессе радиоактивного распада радия С. При бомбардировке альфа - частицами ядер азота обнаружилось, что последние испускали какие-то быстрые частицы с одновременным вылетом в противоположном направлении медленных тяжелых частиц. При изучении этого явления в камере Вильсона было установлено, что быстрые частицы представляют собой протоны, а медленные - ядра кислорода. Выяснилось, что ядро азота, захватывая одну альфа - частицу, преобразуется в ядро кислорода с испусканием одного протона. Бомбардировка альфа - частицами ядер атомов других элементов подтвердила наличие протонов и в этих ядрах.
Однако ядра (за исключением ядра водорода) не могут состоять только из одних протонов. Действительно, ядро атома гелия, занимающего второе место в таблице Д. И. Менделеева, имеет заряд, равный заряду двух протонов, а его масса больше массы протона в четыре раза. Точно так же заряд ядра кислорода равен восьми зарядам протона, а масса этого ядра в шестнадцать раз больше массы протона. Объяснение такого расхождения было найдено после открытия новой «элементарной» частицы - так называемого нейтрона.
В 1930 году ученые установили, что при бомбардировке альфа-частицами некоторых элементов (бериллия, бора и других) появляется излучение из незаряженных частиц, способное проникать через слой свинца сравнительно большей толщины (до 5 сантиметров). В 1931 году французские физики Ирэн и Фредерик Жолио - Кюри обнаружили, что если на пути этого излучения поместить вещество, молекулы которого содержат большое число водородных атомов (например, парафин), то из него начинают вылетать протоны.
Можно было бы предположить, что вновь открытое излучение состоит из фотонов. Однако для того, чтобы иметь возможность выбивать из парафина протоны, эти фотоны должны были бы обладать энергией около 50 миллионов электрон вольт. В последнем случае они проникали бы через значительно большие толщи свинца, чем наблюдалось на опыте (для прохождения фотона через 5 сантиметров свинца нужна энергия всего лишь в 5 миллионов электрон - вольт). Возникшее противоречие было решено в результате работ английского ученого Чадвика. Он показал, что вылетающие из парафина протоны, а также ядра, испускаемые под воздействием неизвестного излучения другими атомами, движутся так, будто они выбиты не фотоном, а тяжелой частицей, масса которой приблизительно равна массе протона. Таким образом, усилиями ряда физиков было установлено существование незаряженной тяжелой частицы - нейтрона. Масса нейтрона в 1839 раз больше массы электрона, но в отличие от протона (и электрона) его заряд равен нулю. Именно поэтому нейтроны обладают способностью проникать через толстые слои свинца.
Незаряженная частица может попасть внутрь атома, не испытывая ни отталкивания, ни притяжения со стороны заряженных частиц (электронов и ядра) и не тратя своей энергии на преодоление действия электрических сил, на ионизацию атомов. Отсюда и путь нейтрона, в каком - либо веществе при прочих равных условиях длиннее, чем, например, протона. Вследствие неспособности нейтрона производить ионизацию его очень трудно заметить, что явилось причиной сравнительно позднего обнаружения этой частицы.
Открытие нейтрона позволило понять, почему вес атомных ядер превышает вес содержащихся в них протонов. Советские ученые Д. Д. Иваненко и Е. Д. Гапон выдвинули идею о протоно - нейтронном строении ядер, которая ныне является общепринятой. Согласно этой точке зрения, в ядре гелия находятся, кроме двух протонов, еще два нейтрона, и поэтому его заряд равен двум, а масса в четыре раза больше массы протона (или почти равной ей массы нейтрона). Точно так же и в других ядрах, помимо протонов, присутствуют нейтроны. При ядерных расщеплениях, вызываемых, например, попаданием в ядро быстрой альфа-частицы, может происходить испускание нейтронов. Этот процесс как раз и послужил первым указанием на существование последних.
Не имеющий заряда нейтрон легко может проникать не только внутрь атома, но даже и внутрь ядра. Попадание нейтрона в тяжелое ядро приводит в ряде случаев к разрушению последнего, в результате чего образуются более легкие ядра и выделяется весьма значительное количество внутриядерной энергии. Свойство нейтронов производить ядерные расщепления используется для получения атомной (правильнее было бы сказать - ядерной) энергии.
Большая проникающая способность нейтронов, наряду со способностью разрушать ядра, обусловливает их опасное действие на живые существа. Достаточно мощный поток нейтронов, попав во внутренние части организма, выбивает из ядер быстрые протоны и другие заряженные частицы, которые, ионизуя встречающиеся на их пути атомы сложных органических молекул, способствуют разложению последних и тем самым нарушению жизнедеятельности растения или животного. Однако разрушительные свойства нейтронов можно использовать для блага людей. Ведь именно с помощью этих частиц ученые открыли прежде недоступные природные кладовые внутриядерной энергии: Разбивая ядра, нейтроны высвобождают эту энергию, которую у нас в Советском Союзе уже применяют в мирных целях. Кроме того, некоторые химические элементы после бомбардировки нейтронами превращаются в искусственные радиоактивные вещества, находящие все более широкое распространение в медицине, при изучении жизнедеятельности организмов методом меченых атомов, в технике и т. п.
В настоящее время существует много способов получения нейтронов, необходимых для проведения различных исследований в области ядерной физики и для ряда практических применений. Самым старым из этих способов является изготовление так называемого радий - бериллиевого источника. Стеклянный или металлический сосудик заполняют порошком бериллия в смеси с какой-либо солью радия (например, бромистым радием). При радиоактивном распаде из ядер радия вылетают альфа-частицы, которые, взаимодействуя с ядрами бериллия, выбивают из них нейтроны. Последние благодаря большой проникающей способности свободно проходят через стенки сосуда.
После изобретения специальных устройств - ускорителей (циклотронов, фазотронов, синхрофазотронов и других), сообщающих заряженным частицам большие энергии, появилась возможность получать нейтроны искусственным путем. Для этого пучок ускоренных в циклотроне или другой подобной машине заряженных тяжелых частиц, скажем, дейтронов (ядер тяжелого водорода), направляют на мишень, сделанную из определенного вещества (например, из лития). В результате из ядер атомов мишени выбиваются нейтроны. Меняя энергию бомбардирующих мишень «снарядов», можно получать нейтроны различной энергии.
Еще одним мощным источником тяжелых незаряженных частиц являются ядерные реакторы (котлы), в которых осуществляются цепные реакции деления тяжелых ядер. При этом образуется большое число нейтронов, выходящих из котла наружу.
Нейтроны, как и другие «элементарные» частицы (электроны, протоны), обладают волновыми свойствами. Пучок нейтронов, подобно свету (потоку фотонов) 3, испытывает отражение, дифракцию, поляризуется и т. п. Поэтому тяжелые незаряженные частицы можно использовать для изучения строения кристаллов (путем их просвечивания нейтронным пучком) так же, как используются рентгеновские лучи. Некоторую трудность представляет регистрация нейтронов, ибо они не производят ионизации и потому нельзя заметить их прохождения через камеру Вильсона, счетчик, ионизационную камеру я другие приборы, применяющиеся обычно для обнаружения и счета заряженных частиц. Не оставляют следов нейтроны и в фотоэмульсиях. Однако свойство нейтронов разрушать ядра, вызывать ядерные реакции дает нам в руки способ для регистрации этих частиц. В обычный счетчик или ионизационную камеру добавляют газ, содержащий ядра бора. Нейтроны расщепляют эти ядра, при этом вылетают альфа-частицы, создающие разряды в счетчике или ионизационный ток в камере, что позволяет фиксировать поток нейтронов. Можно воспользоваться для обнаружения нейтронов фотоэмульсиями, к которым подмешаны соли лития или бара. При попадании нейтрона в ядро атома какого - либо из этих элементов происходит расщепление ядра с вылетом быстрой заряженной частицы, след которой виден в фотоэмульсии.

Несмотря на то, что между протонами и нейтронами имеется существенное различие, заключающееся в отсутствии заряда у последних, в других отношениях они очень похожи друг на друга. Массы этих частиц почти в точности равны, а их поведение внутри ядра (величина и характер ядерных сил, действующих между протонами, между нейтронами и между теми и другими) также примерно одинаково. Дело в том, что протоны, как одноименно заряженные частицы, должны отталкиваться в ядре друг от друга. Поскольку все же ядра существуют в виде устойчивых образований, очевидно, что протоны удерживаются в них какими-то силами, превышающими электростатические силы отталкивания. Оказалось, что эти специфические ядерные силы действуют не только между протонами и между нейтронами, но и связывают друг с другом частицы обоих этих видов. Это значит, что протоны и нейтроны ядра определенным образом взаимодействуют друг с другом (хотя физическая природа такого взаимодействия еще далеко не выяснена). Учеными было также обнаружено, что обе частицы могут превращаться друг в друга. Так, в ядре происходит превращение нейтрона в протон с испусканием отрицательно заряженного электрона и еще одной незаряженной легкой частицы -нейтрино (масса нейтрино меньше 1:400 массы электрона). Имеет место и другой процесс: протон в ядре переходит в нейтрон с вылетом положительно заряженного электрона (позитрона) и нейтрино. Все эти явления, наблюдаемые при распаде некоторых радиоактивных ядер, получили одно общее название бета - распада.
С точки зрения теории бета - распада, нейтрон и протон ничем не различаются: и тот и другой хорошо превращаются друг в друга. По этой причине обе частицы нередко называют просто нуклонами. Следует, правда, подчеркнуть, что если в ядре все нуклоны ведут себя по отношению к бета- распаду одинаково, то в свободном состоянии, вне ядра, протоны и нейтроны проявляют различные свойства. Протон сам по себе - устойчивая, или, как говорят иначе, стабильная частица, в то время как свободный нейтрон самопроизвольно распадается с периодом полураспада примерно в 20 минут. При этом он превращается в протон и испускает, как и при распаде внутри ядра, электрон и нейтрино.
Различие между протоном и нейтроном в свободном состоянии обусловлено рядом причин. Одной из них является то, что для превращения протона в нейтрон нужно затратить значительную энергию (во всяком случае большую, чем 1,9 миллиона электрон - вольт). Поскольку свободному протону неоткуда позаимствовать эту энергию, он и представляет собой стабильную частицу. Что же касается нейтрона, то он обладает большей массой, чем протон, и, следовательно, большим запасом энергии. При превращении нейтрона в протон выделяется приблизительно 800 тысяч электронвольт энергии. Поэтому свободные нейтроны отличаются свойством радиоактивности.
Протоны, нейтроны, нейтрино, так же как фотоны и электроны, встречаются в космических лучах. В частности, протоны составляют так называемую первичную компоненту космического излучения, то есть приходят на Землю из межзвездного пространства. Разумеется, нейтроны, которые в свободном состоянии превращаются в протоны, не могут присутствовать в первичном излучении. Однако они образуются в атмосфере при столкновении первичных протонов (и более тяжелых ядер) с ядрами атомов азота, кислорода и других газов воздушной оболочки нашей планеты. Протоны космических лучей обладают колоссальной энергией и поэтому могут, несмотря на наличие положительного заряда, легко проникать в ядра атомов. При столкновении нуклонов, обладающих такой гигантской энергией, происходят процессы, которые не наблюдаются при взаимодействии нуклонов меньшей энергии. Например, при таких столкновениях происходит рождение новых частиц - мезонов различных масс.
Описанные выше факты взаимодействия нуклонов в ядре совсем не означают, будто нейтрон состоит из протона и электрона или, наоборот, протон содержит в себе нейтрон и позитрон. Суть бета - распада заключается именно в том, что нейтрон превращается в три другие частицы (протон, электрон, нейтрино) или протон превращается в нейтрон, позитрон и нейтрино. Эти процессы происходят при строгом соблюдении законов сохранения энергии, массы, количества движения, заряда и т. п. и убедительно свидетельствуют об изменчивости «элементарных» частиц и наличии глубокой связи между ними.

Протон -- стабильная частица из класса адронов, ядро атома водорода.

Трудно сказать, какое событие следует считать открытием протона: ведь как ион водорода он был известен уже давно. В открытии протона сыграли роль и создание Э. Резерфордом планетарной модели атома (1911), и открытие изотопов (Ф. Содди, Дж. Томсон, Ф. Астон, 1906--1919), и наблюдение ядер водорода, выбитых альфа-частицами из ядер азота (Э. Резерфорд, 1919). В 1925 г. П. Блэкетт получил в камере Вильсона (см. Детекторы ядерных излучений) первые фотографии следов протона, подтвердив открытие искусственного превращения элементов. В этих опытах?-частица захватывалась ядром азота, которое испускало протон и превращалось в изотоп кислорода.

Вместе с нейтронами протоны образуют атомные ядра всех химических элементов, причем число протонов в ядре определяет атомный номер данного элемента. Протон имеет положительный электрический заряд, равный элементарному заряду, т. е. абсолютной величине заряда электрона. Это проверено на эксперименте с точностью до 10-21. Масса протона mp = (938,2796 ± 0,0027)МэВ или ~ 1,6-10-24 г, т. е. протон в 1836 раз тяжелее электрона! С современной точки зрения протон не является истинно элементарной частицей: он состоит из двух u-кварков с электрическими зарядами +2/3 (в единицах элементарного заряда) и одного d-кварка с электрическим зарядом -1/3. Кварки связаны между собой обменом другими гипотетическими частицами -- глюонами, квантами поля, переносящего сильные взаимодействия. Данные экспериментов, в которых рассматривались процессы рассеяния электронов на протонах, действительно свидетельствуют о наличии внутри протонов точечных рассеивающих центров. Эти опыты в определенном смысле очень похожи на опыты Резерфорда, приведшие к открытию атомного ядра. Будучи составной частицей, протон имеет конечные размеры ~ 10-13 см, хотя, разумеется, его нельзя представлять как твердый шарик. Скорее, протон напоминает облако с размытой границей, состоящее из рождающихся и аннигилирующих виртуальных частиц.Протон, как и все адроны, участвует в каждом из фундаментальных взаимодействий. Так. сильные взаимодействия связывают протоны и нейтроны в ядрах, электромагнитные взаимодействия -- протоны и электроны в атомах. Примерами слабых взаимодействий могут служить бета-распад нейтрона или внутриядерное превращение протона в нейтрон с испусканием позитрона и нейтрино (для свободного протона такой процесс невозможен в силу закона сохранения и превращения энергии, так как нейтрон имеет несколько большую массу). Спин протона равен 1/2. Адроны с полуцелым спином называются барионами (от греческого слова, означающего «тяжелый»). К барионам относятся протон, нейтрон, различные гипероны (?, ?, ?, ?) и ряд частиц с новыми квантовыми числами, большинство из которых еще не открыто. Для характеристики барионов введено особое число -- барионный заряд, равный 1 для барионов, - 1 -- для антибарионов и О -- для всех прочих частиц. Барионный заряд не является источником барионного поля, он введен лишь для описания закономерностей, наблюдавшихся в реакциях с частицами. Эти закономерности выражаются в виде закона сохранения барионного заряда: разность между числом барионов и антибарионов в системе сохраняется в любых реакциях. Сохранение барионного заряда делает невозможным распад протона, ибо он легчайший из барионов. Этот закон носит эмпирический характер и, безусловно, должен быть проверен на эксперименте. Точность закона сохранения барионного заряда характеризуется стабильностью протона, экспериментальная оценка для времени жизни которого дает значение не меньше 1032 лет.

В то же время в теориях, объединяющих все виды фундаментальных взаимодействий, предсказываются процессы, приводящие к нарушению барионного заряда и к распаду протона. Время жизни протона в таких теориях указывается не очень точно: примерно 1032±2 лет. Это время огромно, оно во много раз больше времени существования Вселенной (~ 2*1010 лет). Поэтому протон практически стабилен, что сделало возможным образование химических элементов и в конечном итоге появление разумной жизни. Однако поиски распада протона представляют сейчас одну из важнейших задач экспериментальной физики. При времени жизни протона ~ 1032 лет в объеме воды в 100 м3 (1 м3 содержит ~ 1030 протонов) следует ожидать распада одного протона в год. Остается всего лишь зарегистрировать этот распад. Открытие распада протона станет важным шагом к правильному пониманию единства сил природы.

Нейтрон -- нейтральная частица, относящаяся к классу адронов. Открыт в 1932 г. английским физиком Дж. Чедвиком. Вместе с протонами нейтроны входят в состав атомных ядер. Электрический заряд нейтрона qn равен нулю. Это подтверждается прямыми измерениями заряда по отклонению пучка нейтронов в сильных электрических полях, показавшими, что |qn| <10-20e (здесь е -- элементарный электрический заряд, т. е. абсолютная величина заряда электрона). Косвенные данные дают оценку |qn|< 2?10-22 е. Спин нейтрона равен 1/2. Как адрон с полуцелым спином, он относится к группе барионов. У каждого бариона есть античастица; антинейтрон был открыт в 1956 г. в опытах по рассеянию антипротонов на ядрах. Антинейтрон отличается от нейтрона знаком барионного заряда; у нейтрона, как и у протона, барионный заряд равен +1.Как и протон и прочие адроны, нейтрон не является истинно элементарной частицей: он состоит из одного u-кварка с электрическим зарядом +2/3 и двух d-кварков с зарядом - 1/3, связанных между собой глюонным полем.

Нейтроны устойчивы лишь в составе стабильных атомных ядер. Свободный нейтрон -- нестабильная частица, распадающаяся на протон (р), электрон (е-) и электронное антинейтрино. Время жизни нейтрона составляет (917 ?14) с, т. е. около 15 мин. В веществе в свободном виде нейтроны существуют еще меньше вследствие сильного поглощения их ядрами. Поэтому они возникают в природе или получаются в лаборатории только в результате ядерных реакций.

По энергетическому балансу различных ядерных реакций определена величина разности масс нейтрона и протона: mn-mp(1,29344 ±0,00007) МэВ. Из сопоставления ее с массой протона получим массу нейтрона: mn = 939,5731 ± 0,0027 МэВ; это соответствует mn ~ 1,6-10-24.Нейтрон участвует во всех видах фундаментальных взаимодействий. Сильные взаимодействия связывают нейтроны и протоны в атомных ядрах. Пример слабого взаимодействия -- бета-распад нейтрона.

Участвует ли эта нейтральная частица в электромагнитных взаимодействиях? Нейтрон обладает внутренней структурой, и в нем при общей нейтральности существуют электрические токи, приводящие, в частности, к появлению у нейтрона магнитного момента. Иными словами, в магнитном поле нейтрон ведет себя подобно стрелке компаса. Это лишь один из примеров его электромагнитного взаимодействия. Большой интерес приобрели поиски дипольного электрического момента нейтрона, для которого была получена верхняя граница. Здесь самые эффективные опыты удалось поставить ученым Ленинградского института ядерной физики АН СССР; поиски дипольного момента нейтронов важны для понимания механизмов нарушения инвариантности относительно обращения времени в микропроцессах.

Гравитационные взаимодействия нейтронов наблюдались непосредственно по их падению в поле тяготения Земли.

Сейчас принята условная классификация нейтронов по их кинетической энергии:

медленные нейтроны (<105эВ, есть много их разновидностей),

быстрые нейтроны (105?108эВ), высокоэнергичные (> 108эВ).

Весьма интересными свойствами обладают очень медленные нейтроны(10-7эВ), которые получили название ультрахолодных. Оказалось, что ультрахолодные нейтроны можно накапливать в «магнитных ловушках» и даже ориентировать там их спины в определенном направлении. С помощью магнитных полей специальной конфигурации ультрахолодные нейтроны изолируются от поглощающих стенок и могут «жить» в ловушке, пока не распадутся. Это позволяет проводить многие тонкие эксперименты по изучению свойств нейтронов. Другой метод хранения ультрахолодных нейтронов основан на их волновых свойствах. Такие нейтроны можно просто хранить в замкнутой «банке». Эта идея была высказана советским физиком Я. Б. Зельдовичем в конце 1950-х гг., и первые результаты были получены в Дубне в институте ядерных исследований спустя почти десятилетие.

Недавно ученым удалось построить сосуд, в котором ультрахолодные нейтроны живут до своего естественного распада.

Свободные нейтроны способны активно взаимодействовать с атомными ядрами, вызывая ядерные реакции. В результате взаимодействия медленных нейтронов с веществом можно наблюдать резонансные эффекты, дифракционное рассеяние в кристаллах и т. п. Благодаря этим своим особенностям нейтроны широко используются в ядерной физике и физике твердого тела. Они играют важную роль в ядерной энергетике, в производстве трансурановых элементов и радиоактивных изотопов, находят практическое применение в химическом анализе и в геологической разведке.

Атом - это наименьшая частица химического элемента, сохраняющая все его химические свойства. Атом состоит из ядра, имеющего положительный электрический заряд, и отрицательно заряженных электронов. Заряд ядра любого химического элемента равен произведению Z на e, где Z - порядковый номер данного элемента в периодической системе химических элементов, е - величина элементарного электрического заряда.

Электрон - это мельчайшая частица вещества с отрицательным электрическим зарядом е=1,6·10 -19 кулона, принятым за элементарный электрический заряд. Электроны, вращаясь вокруг ядра, располагаются на электронных оболочках К, L, М и т. д. К - оболочка, ближайшая к ядру. Размер атома определяется размером его электронной оболочки. Атом может терять электроны и становиться положительным ионом или присоединять электроны и становиться отрицательным ионом. Заряд иона определяет число потерянных или присоединенных электронов. Процесс превращения нейтрального атома в заряженный ион называется ионизацией.

Атомное ядро (центральная часть атома) состоит из элементарных ядерных частиц - протонов и нейтронов. Радиус ядра примерно в сто тысяч раз меньше радиуса атома. Плотность атомного ядра чрезвычайно велика. Протоны - это стабильные элементарные частицы, имеющие единичный положительный электрический заряд и массу, в 1836 раз большую, чем масса электрона. Протон представляет собой ядро атома самого легкого элемента - водорода. Число протонов в ядре равно Z. Нейтрон - это нейтральная (не имеющая электрического заряда) элементарная частица с массой, очень близкой к массе протона. Поскольку масса ядра складывается из массы протонов и нейтронов, то число нейтронов в ядре атома равно А - Z, где А - массовое число данного изотопа (см. ). Протон и нейтрон, входящие в состав ядра, называются нуклонами. В ядре нуклоны связаны особыми ядерными силами.

В атомном ядре имеется огромный запас энергии, которая высвобождается при ядерных реакциях. Ядерные реакции возникают при взаимодействии атомных ядер с элементарными частицами или с ядрами других элементов. В результате ядерных реакций образуются новые ядра. Например, нейтрон может переходить в протон. В этом случае из ядра выбрасывается бета-частица, т. е. электрон.

Переход в ядре протона в нейтрон может осуществляться двумя путями: либо из ядра испускается частица с массой, равной массе электрона, но с положительным зарядом, называемая позитроном (позитронный распад), либо ядро захватывает один из электронов с ближайшей к нему К-оболочки (К-захват).

Иногда образовавшееся ядро обладает избытком энергии (находится в возбужденном состоянии) и, переходя в нормальное состояние, выделяет лишнюю энергию в виде электромагнитного излучения с очень малой длиной волны - . Энергия, выделяющаяся при ядерных реакциях, практически используется в различных отраслях промышленности.

Атом (греч. atomos - неделимый) наименьшая частица химического элемента, обладающая его химическими свойствами. Каждый элемент состоит из атомов определенного вида. В состав атома входят ядро, несущее положительный электрический заряд, и отрицательно заряженные электроны (см.), образующие его электронные оболочки. Величина электрического заряда ядра равна Z-e, где е - элементарный электрический заряд, равный по величине заряду электрона (4,8·10 -10 эл.-ст. ед.), и Z - атомный номер данного элемента в периодической системе химических элементов (см.). Так как неионизированный атом нейтрален, то число электронов, входящих в него, также равно Z. В состав ядра (см. Ядро атомное) входят нуклоны, элементарные частицы с массой, примерно в 1840 раз большей массы электрона (равной 9,1·10 -28 г), протоны (см.), заряженные положительно, и не имеющие заряда нейтроны (см.). Число нуклонов в ядре называется массовым числом и обозначается буквой А. Количество протонов в ядре, равное Z, определяет число входящих в атом электронов, строение электронных оболочек и химические свойства атома. Количество нейтронов в ядре равно А-Z. Изотопами называются разновидности одного и того же элемента, атомы которых отличаются друг от друга массовым числом А, но имеют одинаковые Z. Таким образом, в ядрах атомов различных изотопов одного элемента имеется разное число нейтронов при одинаковом числе протонов. При обозначении изотопов массовое число А записывается сверху от символа элемента, а атомный номер внизу; например, изотопы кислорода обозначаются:

Размеры атома определяются размерами электронных оболочек и составляют для всех Z величину порядка 10 -8 см. Поскольку масса всех электронов атома в несколько тысяч раз меньше массы ядра, масса атома пропорциональна массовому числу. Относительная масса атома данного изотопа определяется по отношению к массе атома изотопа углерода С 12 , принятой за 12 единиц, и называется изотопной массой. Она оказывается близкой к массовому числу соответствующего изотопа. Относительный вес атома химического элемента представляет собой среднее (с учетом относительной распространенности изотопов данного элемента) значение изотопного веса и называется атомным весом (массой).

Атом является микроскопической системой, и его строение и свойства могут быть объяснены лишь при помощи квантовой теории, созданной в основном в 20-е годы 20 века и предназначенной для описания явлений атомного масштаба. Опыты показали, что микрочастицы - электроны, протоны, атомы и т. д.,- кроме корпускулярных, обладают волновыми свойствами, проявляющимися в дифракции и интерференции. В квантовой теории для описания состояния микрообъектов используется некоторое волновое поле, характеризуемое волновой функцией (Ψ-функция). Эта функция определяет вероятности возможных состояний микрообъекта, т. е. характеризует потенциальные возможности проявления тех или иных его свойств. Закон изменения функции Ψ в пространстве и времени (уравнение Шредингера), позволяющий найти эту функцию, играет в квантовой теории ту же роль, что в классической механике законы движения Ньютона. Решение уравнения Шредингера во многих случаях приводит к дискретным возможным состояниям системы. Так, например, в случае атома получается ряд волновых функций для электронов, соответствующих различным (квантованным) значениям энергии. Система энергетических уровней атома, рассчитанная методами квантовой теории, получила блестящее подтверждение в спектроскопии. Переход атома из основного состояния, соответствующего низшему энергетическому уровню Е 0 , в какое-либо из возбужденных состояний E i происходит при поглощении определенной порции энергии Е i - Е 0 . Возбужденный атом переходит в менее возбужденное или основное состояние обычно с испусканием фотона. При этом энергия фотона hv равна разности энергий атома в двух состояниях: hv= E i - Е k где h - постоянная Планка (6,62·10 -27 эрг·сек), v - частота света.

Кроме атомных спектров, квантовая теория позволила объяснить и другие свойства атомов. В частности, были объяснены валентность, природа химической связи и строение молекул, создана теория периодической системы элементов.

§1. Знакомьтесь: электрон, протон, нейтрон

Атомы - мельчайшие частицы вещества.
Если увеличить до размеров Земного шара яблоко средней величины, то атомы станут размером всего лишь с яблоко. Несмотря на столь малые размеры, атом состоит из еще более мелких физических частиц.
Со строением атома вы должны быть уже знакомы из школьного курса физики. И все-таки напомним, что в составе атома есть ядро и электроны, которые вращаются вокруг ядра так быстро, что становятся неразличимыми - образуют "электронное облако", или электронную оболочку атома.

Электроны принято обозначать так: e . Электроны e − очень легкие, почти невесомые, но зато имеют отрицательный электрический заряд. Он равен −1. Электрический ток, которым все мы пользуемся - это поток электронов, бегущий в проводах.

Ядро атома , в котором сосредоточена почти вся его масса, состоит из частиц двух сортов - нейтронов и протонов.

Нейтроны обозначают так: n 0 , а протоны так: p + .
По массе нейтроны и протоны почти одинаковы - 1,675 · 10 −24 г и 1,673 · 10 −24 г.
Правда, считать массу таких маленьких частиц в граммах очень неудобно, поэтому ее выражают в углеродных единицах , каждая из которых равна 1,673 · 10 −24 г.
Для каждой частицы получают относительную атомную массу , равную частному от деления массы атома (в граммах) на массу углеродной единицы. Относительные атомные массы протона и нейтрона равны 1, а вот заряд у протонов положительный и равен +1, в то время как у нейтронов заряда нет.

. Загадки про атом


Атом можно собрать "в уме" из частиц, как игрушку или машинку из деталей детского конструктора. Надо только при этом соблюдать два важных условия.

  • Первое условие : каждому виду атомов соответствует свой собственный набор "деталей" - элементарных частиц . Например, в атоме водорода обязательно будет ядро с положительным зарядом +1, значит, в нем непременно должен быть один протон (и не больше).
    В атоме водорода могут быть и нейтроны. Об этом - в следующем параграфе .
    Атом кислорода (порядковый номер в Периодической системе равен 8) будет иметь ядро, заряженное восемью положительными зарядами (+8), - значит, там восемь протонов. Поскольку масса атома кислорода равна 16 относительных единиц, чтобы получить ядро кислорода, добавим еще 8 нейтронов.
  • Второе условие состоит в том, чтобы каждый атом оказался электронейтральным . Для этого в нем должно быть электронов столько, чтобы уравновесить заряд ядра. Иначе говоря, число электронов в атоме равно числу протонов в его ядре, а также порядковому номеру этого элемента в Периодической системе .

Любовь