Интересное в сети! Интересные факты, удивительные факты, неизвестные факты в музее фактов.

Осветите свои знания в области науки нашими забавными легкими фактами для детей. Наслаждайтесь интересными мелочами, связанными с скоростью света, оптикой, солнечным светом, ультрафиолетовым светом и инфракрасным светом. Понимают, как работает электромагнитное излучение, и обнаруживают множество увлекательных свойств света.

В физике свет относится к электромагнитному излучению. Свет, о котором мы обычно говорим в повседневной жизни, относится к видимому спектру (части электромагнитного спектра, который может видеть человеческий глаз).

Другие животные могут видеть части спектра, которые люди не могут. Например, большое количество насекомых может видеть ультрафиолетовый (УФ) свет.

Ультрафиолетовый свет можно использовать для того, чтобы показать вещи, которые человеческий глаз не видит, пригодится для криминалистов.

Длина волны инфракрасного света слишком велика, чтобы быть видимой для человеческого глаза.

Ученые изучают свойства и поведение света в области физики, известной как оптика.

Исаак Ньютон заметил, что тонкий луч солнечного света, поражающий стеклянную призму под углом, создает полосу видимых цветов, включающую красный, оранжевый, желтый, зеленый, синий, индиго и фиолетовый (ROYGBIV). Это произошло потому, что разные цвета проходят через стекло (и другие среды) с разной скоростью, заставляя их преломляться под разными углами и отделяться друг от друга.

Свет проходит очень, очень быстро. Скорость света в вакууме (область, свободная от материи) составляет около 186 000 миль в секунду (300 000 километров в секунду).

Свет распространяется медленнее с помощью различных сред, таких как стекло, вода и воздух. Этим средам дается показатель преломления для описания того, насколько они замедляют движение света. Стекло имеет показатель преломления 1,5, что означает, что огни проходят через него со скоростью около 124 000 миль в секунду (200 000 километров в секунду). Показатель преломления воды составляет 1,3, а показатель преломления воздуха — 1.0003, что означает, что воздух лишь слегка замедляет свет.

Свет занимает 1,255 секунды, чтобы добраться от Земли до Луны.

Солнечный свет может достигать глубины около 80 метров (262 фута) в океане.

Одна из многих вещей, над которыми работал итальянский ученый Галилей Галилей, — это телескопы, производящие телескопы с 30-кратным увеличением в некоторых из его более поздних работ. Эти телескопы помогли ему обнаружить четыре крупнейшие луны, вращающиеся вокруг Юпитера (позже названные спутниками Галилея).

Фотосинтез — это процесс, который включает растения, использующие энергию от солнечного света, для превращения углекислого газа в пищу.

Оптика – раздел физики, который изучает световые явления и законы, установленные для них, а также взаимодействие света с веществом, природу света.

Информация о мире приходит к человеку посредством зрения. При помощи света мы получаем большую часть информации об окружающем мире.

Первые сведения о свете появились 2,5 тысячи лет назад.

Пифагор был одним из первых ученых, кто дал научную гипотезу относительно природы света (см. Рис. 1). Он первый не только догадался, но и доказал, что свет распространяется прямолинейно. Он, а затем и другие геометры, вплоть до Евклида, использовали световые явления отражения и преломления для построения основ геометрии. Недаром один из разделов оптики так и называется – геометрическая оптика.

Рис. 1. Пифагор

Пифагор: «Свет – поток частиц, которые излучают предметы, проникая в глаз человека, они приносят информацию о том, что же нас окружает».

В XVII веке сторонником этой теории стал Исаак Ньютон (см. Рис. 2). Он объяснял много световых явлений, основываясь на том, что свет – это поток специальных частиц.

Рис. 2. Исаак Ньютон

«Корпускула» происходит от лат. corpusculum – частица. Поэтому теория Ньютона стала называться корпускулярной теорией света.

1. Прямолинейное распространение света.

2. Закон отражения.

3. Закон образования тени от предмета.

В это же время появилась другая теория – волновая теория света.

Сторонником этой теории был Христиан Гюйгенс (см. Рис. 3). Он пытался объяснить те же явления, что и Ньютон, только с той позиции, что свет – это волна.

Рис. 3. Христиан Гюйгенс

Гюйгенс построил волновую теорию света по аналогии с волновыми процессами на воде и в воздухе и потому считал, что световые волны также должны распространяться в какой-то упругой среде, которую назвал световым эфиром. Эта идея прослужила основой волновой оптики вплоть до начала XX века.

В те времена уже было замечено, что свет распространяется не только прямолинейно.

1. Свет может огибать препятствия – дифракция (см. Рис. 4).

Рис. 4. Дифракция

2. Волны могут складываться – интерференция (см. Рис. 5).

Рис. 5. Интерференция

Эти явления свойственны только волнам, поэтому Гюйгенс считал, что свет – это волна.

Корпускулярная теория не могла объяснить, как один луч проходит через другой. Если рассматривать свет как поток частиц, то должно наблюдаться взаимодействие, а его не наблюдалось, и это говорило в пользу того, что свет – волна.

В середине XIX века была создана теория Максвелла. Он доказал, что электромагнитное поле распространяется со скоростью 300 тысяч км в сек.

Вследствие проведенных опытов было выяснено, что с такой скоростью распространяется и свет.

Свет – частный случай электромагнитной волны.

XVII в. – датский ученый Ремер провел эксперимент, в котором выяснилось, что скорость распространения света равна примерно 300 тысяч км в сек.

1848 г. – Ипполит Физо доказал, что скорость света составляет 300 тысяч км в сек.

Это все подтверждало тот факт, что свет является электромагнитной волной.

В XIX веке Генрих Герц (см. Рис. 6) изучал свойства электромагнитных волн и показал, что свет может быть частицей. Герц открыл явление фотоэффекта.

Рис. 6. Генрих Герц

Генрих Герц изучал электромагнитные волны, изначально считая, что их не существует, и проявил настоящее мужество, первым признав их реальность как природного объекта.

Фотоэффект: под действием света из металлической пластины, заряженной отрицательно, выбиваются электроны.

Это может выполняться только в том случае, если свет – поток частиц.

В XX веке пришли к окончательному решению, введя понятие корпускулярно-волнового дуализма света.

Свет ведет себя при распространении как волна (волновые свойства), а при излучении и поглощении – как частица (со всеми свойствами частиц). То есть свет имеет двойную природу.

Поэтому все явления рассматриваются с позиций этих двух теорий.

Общие сведения о природе и свойствах света.

ОПРЕДЕЛЕНИЕ: Оптика – раздел физики, в котором изучают вопрос о природе света, закономерности световых явлений и процессы взаимодействия света с веществом.

Оптикой также обычно называют учение о физических явлениях, связанных с распространением коротких электромагнитных волн. Оптический диапазон спектра (инфракрасные, видимые и ультрафиолетовые лучи) захватывает область длин волн от ~10 -4 м до ~10 -8 м.

При этом нужно помнить, что границы диапазонов весьма условны.

Для измерения длин волн в диапазонах, близких к оптическому: ИК; УФ, рентгеновскому – применяют следующие единицы измерения:

1мкм=10 -6 м;

Видимый свет: l к =7800А=780нм;

l ф =4000А=400нм.

В течение 2,5 столетий представления о природе света претерпевали весьма существенные изменения. В конце 17в. сформировались две принципиально различные теории о природе света:

Корпускулярная теория, разработанная Ньютоном[a] (1672г.)

Волновая теория, разработанная Гюйгенсом[b] и Гуком[c].

Согласно корпускулярной теории , свет есть поток материальных частиц (корпускул), летящих с большой скоростью от источника.

Согласно волновой теории , свет представляет собой волну, исходящую от источника света и распространяющуюся с большой скоростью в так называемом «мировом эфире» – неподвижной упругой среде, непрерывно заполняющей всю Вселенную.

До конца 18в. подавляющее большинство физиков отдавало предпочтение корпускулярной теории Ньютона (основание – прямолинейность распространения света в однородной среде и независимость распространения световых пучков).

В начале 19в. благодаря исследованиям Юнга[d] (1801г.) и Френеля[e] (1815г.) волновая теория была в значительной мере развита и усовершенствована. В ее основу лег принцип Гюйгенса - Френеля.

Согласно Гюйгенсу: каждая точка среды, до которой дошла волна, сама становится источником вторичных волн. (В такой трактовке нельзя было говорить об амплитуде вторичных волн, о распределении интенсивности вдоль волнового фронта). Принцип Гюйгенса в его первоначальной формулировке не мог служить основой волной оптики.

Дополнение Френеля : положение об интерференции вторичных волн.

Волновая теория Гюйгенса – Юнга – Френеля успешно объяснила почти все известные в то время световые явления, в том числе интерференцию, дифракцию и поляризацию света, в связи с чем получила всеобщее признание, а корпускулярная теория Ньютона была отвергнута.



Слабым местом волновой теории являлся гипотетический «мировой эфир». Однако в 60-х годах 19 го столетия, когда Максвелл[f] разработал теорию единого электромагнитного поля, необходимость в «мировом эфире» как особом носителе световых волн отпала. Выяснилось, что свет представляет собой электромагнитные волны, носителем которых является электромагнитное поле. Видимому свету соответствуют электромагнитные волны с l=0,77мкм до l=0,38мкм, создаваемые колебаниями зарядов, входящих в состав атомов и молекул. Таким образом, волновая теория о природе света эволюционировала в электромагнитную теорию света.

Экспериментальные доказательства электромагнитной теории света:

1) опыты Физо[g] (1849г.), Фуко[h] (1850г.), Майкельсона[i] (1881г.) Þ в результате которых экспериментальное значение скорости света совпало с теоретическим значением скорости распространения электромагнитных волн, полученным из электромагнитной теории Максвелла.

2) опыты П.Н. Лебедева[j] (1899г.) по измерению светового давления.

Представление о волновой (электромагнитной) природе света оставалось незыблемым вплоть до конца 19в. К этому времени накопился достаточно обширный материал, не согласующийся с этими представлениями и даже противоречащий ему. Это были данные:

1) о спектрах свечения химических элементов;

2) о распределении энергии в спектре теплового излучения черного тела;

3) о фотоэлектрическом эффекте и др.

Чтобы снять противоречие, было сделано предположение, что излучение, распространение и поглощение электромагнитной энергии носит дискретный характер, т.е. что свет испускается, распространяется и поглощается не непрерывно (как это следовало из волновой теории), а порциями (квантами ).

Исходя из этого предположения, немецкий физик М. Планк[k] в 1900г. создал квантовую теорию электромагнитных процессов, а Альберт Эйнштейн[l] в 1905г. разработал квантовую теорию света , согласно которой свет представляет собой поток световых частиц – фотонов . Таким образом, в начале 20 го столетия возникла новая теория о природе света – квантовая теория , возрождающая в известном смысле корпускулярную теорию Ньютона. Однако фотоны существенно (качественно) отличаются от обычных материальных частиц: все фотоны движутся со скоростью, равной скорости света, обладая при этом конечной массой («масса покоя» фотона равна нулю).

Важную роль в дальнейшем развитии квантовой теории света сыграли теоретические исследования атомных и молекулярных спектров, выполненные Бором[m] (1913), Шредингером[n] (1925), Дираком[o] (1930), Фейнманом[p] (1949), В.А. Фоком[q] (1957).

По современным воззрениям, свет есть сложный электромагнитный процесс, обладающий как волновыми, так и корпускулярными свойствами.

В некоторых явлениях (интерференция, дифракция, поляризация света) обнаруживаются волновые свойства света; эти явления описываются волновой теорией. В других явлениях (фотоэффект, люминесценция, атомные и молекулярные спектры) обнаруживаются корпускулярные свойства света; такие явления описываются квантовой теорией. Таким образом, волновая (электромагнитная) и корпускулярная (квантовая) теория не отвергают, а дополняют друг друга, отражая тем самым двойственный характер свойств света . Здесь мы встречаемся с наглядным примером диалектического единства противоположностей: свет является волной и частицей.

Уместно подчеркнуть, что подобный дуализм присущ не только свету, но и микрочастицам веществ, например, электрону, который мы обычно рассматриваем как частицу, но в некоторых явлениях он обнаруживает себя в качестве волны.

На первый взгляд кажется, что две точки зрения на природу света: волновая (электромагнитная) и квантовая (корпускулярная) взаимно исключают друг друга. Ряд признаков волн и частиц действительно противоположны. Например, движущиеся частицы (фотоны) находятся в определенных точках пространства, а распространяющуюся волну нужно рассматривать как «размазанную» в пространстве и нельзя говорить о местопребывании волны в некоторой определенной точке.

Необходимость приписывать свету с одной стороны волновые свойства, а с другой – квантовые, корпускулярные, – создает впечатление незавершенности наших представлений о природе света. Возникает даже мысль о том, что двойственность природы света является искусственной. Однако развитие оптики, вся совокупность оптических явлений показала, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности (прерывности), характерным для фотонов.

Свет, как мы уже говорили, имеет двойственную природу. И эта природа, в частности, находит свое выражение, как мы покажем далее, например, в формулах, определяющих основные характеристики фотонов: энергию ; импульс ; массу . Т.е. корпускулярные характеристики фотонов связаны с волновой характеристикой света – его частотой: ; [n]=c -1 ;

В проявлении двойственных, противоречивых свойств света имеется важная закономерность. У длинноволнового излучения (например, ИК-излучения) квантовые свойства проявляются в малой степени и основную роль играют волновые свойства. Большая группа оптических явлений объясняется на основе волновых представлений, т.е., в волновой оптике.

Однако если перемещаться по шкале электромагнитных волн в сторону более коротких длин волн, то волновые свойства света будут проявляться все слабее, уступая место более отчетливо проявляющимся квантовым свойствам. (Это видно, например, из закона красной границы фотоэффекта). В частности, волновую природу коротковолнового рентгеновского излучения удалось только обнаружить при использовании в качестве дифракционной решетки кристаллической структуры твердых тел.

Волновые и квантовые свойства света связаны между собой. Рассмотрим эту связь на примере прохождения света через щель в непрозрачном экране (рис.1). Пусть плоскопараллельный пучок монохроматического света проходит через щель АВ вдоль оси Y.

С точки зрения двойственной природы света это означает, что через щель проходит одновременно и поток частиц – фотонов и электромагнитная волна.

Известно, что на экране СД возникает дифракционная картина. Освещенность Е в каждой точке экрана будет пропорциональна интенсивности света в этой точке (см. рис.1, где справа изображено распределение интенсивности света по экрану). Также известно, что интенсивность света пропорциональна квадрату амплитуды A световой волны. Þ .

С квантовой точки зрения образование на экране дифракционной картины означает, что при прохождении света через щель происходит перераспределение фотонов в пространстве и поэтому в разные точки экрана попадает разное число фотонов. Освещенность Е в каждой точке экрана пропорциональна суммарной энергии фотонов, попадающих в единицу времени в данную точку. А эта энергия пропорциональна n 0 , где n 0 – число фотонов, доставивших эту энергию. Þ .

Представим себе ситуацию, когда на щель падает очень слабый световой поток и пусть в пределе его можно было бы считать состоящим из очень небольшого числа поочередно летящих фотонов. Каждый фотон должен проявить себя в той точке экрана, куда он попал. Однако опыты показывают, что и при уменьшении интенсивности светового потока, дифракционная картина не изменяется.

В реальном эксперименте создание светового потока, состоящего из поочередно летящих фотонов, невозможно. Чтобы можно было говорить о сопоставлении с экспериментом, необходимо вообразить, что опыт с попаданием фотона в какую-то точку экрана повторяется очень много раз . При каждом таком опыте фотон с определенной вероятностью может попасть в ту или иную точку. Если наблюдения проводить длительное время, то результат будет такой же, если бы одновременно проходил световой поток, состоящий из очень большого числа фотонов.

Теперь сопоставим два выражения для освещенности. Из них следует, . Т.е. квадрат амплитуды световой волны в какой-либо точке пространства пропорционален числу фотонов, попадающих в эту точку. Или иными словами: квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку .

Таким образом, волновые и квантовые свойства света не исключают, а, наоборот, взаимно дополняют друг друга. Они выражают подлинные закономерности распространения света и его взаимодействия с веществом.

Из всего сказанного следует, что волновые свойства присущи не только совокупности большого числа одновременно летящих фотонов. Каждый отдельный фотон обладает волновыми свойствами . Волновые свойства фотонов проявляются в том, что для него невозможно точно указать, в какую именно точку экрана он попадет после прохождения щели (рис.1). Можно говорить лишь о вероятности попадания каждого фотона в ту или иную точку экрана.

Такое истолкование взаимосвязи между волновыми и квантовыми свойствами света было предложено Эйнштейном. Оно сыграло выдающуюся роль в развитии современной физики, хотя разработка единой теории о природе света, отражающей двойственный корпускулярно-волновой характер света, еще пока не завершена.

Сейчас мы приступим к рассмотрению группы оптических явлений, которые полностью можно объяснить с точки зрения волновой оптики.

Не так давно, в декабре 2000 года мировая научная общественность отмечала столетний юбилей возникновения новой науки – квантовой физики и открытие новой фундаментальной физической константы – постоянной Планка.

Заслуга в этом принадлежит выдающемуся немецкому физику Максу Планку. Событие это осталось практически незамеченным. Между тем, историческая дата 14 декабря 1900 г., когда на заседании Берлинского физического общества Макс Планк впервые произнес слово «квант», имеет все основания стать одним из самых значительных событий в истории человечества. С этого дня начинается отсчет того кардинального переворота в научной мысли, который к настоящему времени привел к качественно новым фундаментальным научным достижениям квантовой теории. В результате, к настоящему времени оказалась заложенной основа тем грядущим масштабным и глубоким изменениям во всех сферах общества, которые ожидают нас в недалеком будущем.

Планку удалось решить проблему спектрального распределения света, излучаемого нагретыми телами, проблему, перед которой классическая физика оказалась бессильной. Планк первым высказал гипотезу о квантовании энергии осциллятора, несовместимую с принципами классической физики. Именно эта гипотеза, развитая впоследствии трудами многих выдающихся физиков, дала толчок процессу пересмотра и ломки старых понятий, который завершился созданием квантовой физики, что и обусловило актуальность нашего исследования.

Цель работы – проанализировать квантовую теорию света.

В соответствии с поставленными целью решались следующие основные задачи :

Рассмотреть развитие представление о природе света;

Изучить квантовые свойства света: фотоэффект и эффект Комтона;

Проанализировать квантовую теорию Планка.

Методы исследования:

Обработка, анализ научных источников;

Анализ научной литературы, учебников и пособий по исследуемой проблеме.

Объект исследования – квантовая теория света

1. Развитие представлений о свете

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Согласно корпускулярной теории, свет представляет собой поток частиц (корпускул), испускаемых светящимися телами. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости корпускул при переходе из одной среды в другую. Для случая преломления света на границе вакуум–среда корпускулярная теория приводила к следующему виду закона преломления:

где c – скорость света в вакууме, υ – скорость распространения света в среде. Так как n > 1, из корпускулярной теории следовало, что скорость света в средах должна быть больше скорости света в вакууме. Ньютон пытался также объяснить появление интерференционных полос, допуская определенную периодичность световых процессов. Таким образом, корпускулярная теория Ньютона содержала в себе элементы волновых представлений.

Волновая теория, в отличие от корпускулярной, рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления. Рис. 1 дает представление о построениях Гюйгенса для определения направления распространения волны, преломленной на границе двух прозрачных сред.

Рис. 1. Построения Гюйгенса для определения направления преломленной волны.

Для случая преломления света на границе вакуум–среда волновая теория приводит к следующему выводу:

Закон преломления, полученный из волновой теории, оказался в противоречии с формулой Ньютона. Волновая теория приводит к выводу: υ < c, тогда как согласно корпускулярной теории υ > c.

Таким образом, к началу XVIII века существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе теории объясняли прямолинейное распространение света, законы отражения и преломления. Весь XVIII век стал веком борьбы этих теорий. Однако в начале XIX столетия ситуация коренным образом изменилась. Корпускулярная теория была отвергнута и восторжествовала волновая теория. Большая заслуга в этом принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.

Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался нерешенным.

В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны. Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт .

Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение

превосходящее по точности все ранее полученные значения более чем на два порядка.

Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако, в оптике как разделе физике под светом понимают не только видимый свет, но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный ИК и ультрафиолетовый УФ. По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν. Рис. 2. дает представление о шкале электромагнитных волн.

Рис. 2. Шкала электромагнитных волн. Границы между различными диапазонами условны

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):

1 нм = 10 –9 м = 10 –7 см = 10 –3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм .

Электромагнитная теория света позволила объяснить многие оптические явления, такие как интерференция, дифракция, поляризация и т. д. Однако, эта теория не завершила понимание природы света. Уже в начале XX века выяснилось, что эта теория недостаточна для истолкования явлений атомного масштаба, возникающих при взаимодействии света с веществом. Для объяснения таких явлений, как излучение черного тела, фотоэффект, эффект Комптона и др. потребовалось введение квантовых представлений

2. Квантовые свойства света: фотоэффект. Эффект Комтона

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (Д. Томсон, 1897 г.), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 3.

Рис. 3. Схема экспериментальной установки для изучения фотоэффекта

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U, полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ, и при неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения . На рис. 4 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Рис. 4.Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения Iн прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU|. Если напряжение на аноде меньше, чем –Uз, фототок прекращается. Измеряя Uз, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина Uз оказалась не зависящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5).

Рис. 5. Зависимость запирающего потенциала Uз от частоты ν падающего света.

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

4) Фотоэффект практически безинерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям электрон при взаимодействии с электромагнитной световой волной должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели невозможно было также понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока, пропорциональность максимальной кинетической энергии частоте света .

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = hν, где h – постоянная Планка Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что и свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. При взаимодействии с веществом фотон целиком передает всю свою энергию hν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A, зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта.

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала Uз от частоты ν (рис. 5), равен отношению постоянной Планка h к заряду электрона e:

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены Р. Милликеном (1914 г.) и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A:

где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10–19 Дж). В квантовой физике часто используется электрон-вольт в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

h = 4,136·10 –15 эВ·с

Среди металлов наименьшей работой выхода обладают щелочные металлы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λкр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света .

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов.

Энергия фотонов равна

Фотон движется в вакууме со скоростью c. Фотон не имеет массы, m = 0. Из общего соотношения специальной теории относительности, связывающего энергию, импульс и массу любой частицы,

E 2 = m 2 c 4 + p 2 c 2 ,

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Эффект Комптона

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии. Согласно волновой теории, электрон под действием периодического поля световой волны совершает вынужденные колебания на частоте волны и поэтому излучает рассеянные волны той же частоты .

Схема Комптона представлена на рис. 6. Монохроматическое рентгеновское излучение с длиной волны λ0, исходящее из рентгеновской трубки R, проходит через свинцовые диафрагмы и в виде узкого пучка направляется на рассеивающее вещество-мишень P (графит, алюминий). Излучение, рассеянное под некоторым углом θ, анализируется с помощью спектрографа рентгеновских лучей S, в котором роль дифракционной решетки играет кристалл K, закрепленный на поворотном столике. Опыт показал, что в рассеянном излучении наблюдается увеличение длины волны Δλ, зависящее от угла рассеяния θ:

Δλ = λ - λ 0 = 2Λ sin 2 θ / 2,

где Λ = 2,43·10–3 нм – так называемая комптоновская длина волны, не зависящая от свойств рассеивающего вещества. В рассеянном излучении наряду со спектральной линией с длиной волны λ наблюдается несмещенная линия с длиной волны λ0. Соотношение интенсивностей смещенной и несмещенной линий зависит от рода рассеивающего вещества.

Рис.6. Схема эксперимента Комптона

На рис.7 представлены кривые распределения интенсивности в спектре излучения, рассеянного под некоторыми углами.

Рис. 7. Спектры рассеянного излучения

Объяснение эффекта Комптона было дано в 1923 году А. Комптоном и П. Дебаем (независимо) на основе квантовых представлений о природе излучения. Если принять, что излучение представляет собой поток фотонов, то эффект Комптона есть результат упругого столкновения рентгеновских фотонов со свободными электронами вещества. У легких атомов рассеивающих веществ электроны слабо связаны с ядрами атомов, поэтому их можно считать свободными. В процессе столкновения фотон передает электрону часть своей энергии и импульса в соответствии с законами сохранения .

Рассмотрим упругое столкновение двух частиц – налетающего фотона, обладающего энергией E0 = hν0 и импульсом p0 = hν0 / c, с покоящимся электроном, энергия покоя которого равна Фотон, столкнувшись с электроном, изменяет направление движения (рассеивается). Импульс фотона после рассеяния становится равным p = hν / c, а его энергия E = hν < E0. Уменьшение энергии фотона означает увеличение длины волны. Энергия электрона после столкновения в соответствии с релятивистской формулой (см. § 7.5) становится равной где pe – приобретенный импульс электрона. Закон сохранения записывается в виде

Закон сохранения импульса

можно переписать в скалярной форме, если воспользоваться теоремой косинусов (см. диаграмму импульсов, рис. 8):

Рис. 8.Диаграмма импульсов при упругом рассеянии фотона на покоящемся электроне.

Из двух соотношений, выражающих законы сохранения энергии и импульса, после несложных преобразований и исключения величины pe можно получить

mc 2 (ν 0 – ν) = hν 0 ν(1 – cos θ).

Переход от частот к длинам волн приводит к выражению, которое совпадает с формулой Комптона, полученной из эксперимента:

Таким образом, теоретический расчет, выполненный на основе квантовых представлений дал исчерпывающее объяснение эффекту Комптона и позволил выразить комптоновскую длину волны Λ через фундаментальные константы h, c и m:

Как показывает опыт, в рассеянном излучении наряду со смещенной линией с длиной волны λ наблюдается и несмещенная линия с первоначальной длиной волны λ0. Это объясняется взаимодействием части фотонов с электронами, сильно связанными с атомами. В этом случае фотон обменивается энергией и импульсом с атомом в целом. Из-за большой массы атома по сравнению с массой электрона атому передается лишь ничтожная часть энергии фотона, поэтому длина волны λ рассеянного излучения практически не отличается от длины волны λ0 падающего излучения .

3. Квантовая теория Планка

Планк пришел к выводу, что процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами. Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. По теории Планка, энергия кванта E прямо пропорциональна частоте света:

где h – так называемая постоянная Планка, равная h = 6,626·10–34 Дж·с. Постоянная Планка – это универсальная константа, которая в квантовой физике играет ту же роль, что и скорость света в СТО.

На основе гипотезы о прерывистом характере процессов излучения и поглощения телами электромагнитного излучения Планк получил формулу для спектральной светимости абсолютно черного тела. Формулу Планка удобно записывать в форме, выражающей распределение энергии в спектре излучения абсолютно черного тела по частотам ν, а не по длинам волн λ.

Здесь c – скорость света, h – постоянная Планка, k – постоянная Больцмана, T – абсолютная температура.

Решение проблемы излучения черного тела ознаменовало начало новой эры в физике. Нелегко было примириться с отказом от классических представлений, и сам Планк, совершив великое открытие, в течение нескольких лет безуспешно пытался понять квантование энергии с позиции классической физики

ЗАКЛЮЧЕНИЕ

Таким образом, первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная И. Ньютона и волновая Р. Гука и Х. Гюйгенса.

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон, и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

В результате, многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1) Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2) Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.

3) Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4) Фотоэффект практически безинерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Концепция фотонов, предложенная А. Эйнштейном в 1905 г. для объяснения фотоэффекта, получила экспериментальное подтверждение в опытах американского физика А. Комптона (1922 г.). Комптон исследовал упругое рассеяние коротковолнового рентгеновского излучения на свободных (или слабо связанных с атомами) электронах вещества. Открытый им эффект увеличения длины волны рассеянного излучения, названный впоследствии эффектом Комптона, не укладывается в рамки волновой теории, согласно которой длина волны излучения не должна изменяться при рассеянии.

В 1900 г. Планк выдвинул гипотезу о квантованности излучаемой энергии.

Формула Планка хорошо описывает спектральное распределение излучения черного тела при любых частотах. Она прекрасно согласуется с экспериментальными данными.

Идея квантования является одной из величайших физических идей. Оказалось, что многие величины считавшиеся непрерывными, имеют дискретный ряд значений. На базе этой идеи возникла квантовая механика, описывающая законы поведения микрочастиц

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гусейханов, М.К. Концепции современного естествознания: - М. : Дашков и К, 2005. - 692 с.

2. Дубнищева, Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: Учеб. пособие для вузов / Т.Я. Дубнищева. - Новосибирск: Сибирское унив. изд-во, 2003. - 407 с.

3. Концепции современного естествознания: учеб. для вузов / Под ред. В.Н. Лавриненко, В.П. Ратникова.- 3-е изд., перераб. и доп. - М. : ЮНИТИ-ДАНА, 2003. - 317 с.

4. Лебедев С.А. Концепции современного естествознания. – М.: 2007

5. Покровский, А.К. Концепции современного естествознания: Учеб. для вузов / А.К. Покровский, Л.Б. Миротин; под ред. Л.Б. Миротина. - М.: Экзамен, 2005. - 480 с

6. Рузавин, Г.И. Концепции современного естествознания: Учеб. для вузов / Г.И. Рузавин. - М. : Юнити, 2005. - 287 с.

7. Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М., 2004

8. Торосян, В.Г. Концепции современного естествознания: учеб. пособие для вузов / В.Г. Торосян. - М. : Высш. шк., 2003. - 208 с.


Концепции современного естествознания: учеб. для вузов / Под ред. В.Н. Лавриненко, В.П. Ратникова.- 3-е изд., перераб. и доп. - М. : ЮНИТИ-ДАНА, 2003. - 317 с.

Рузавин, Г.И. Концепции современного естествознания: Учеб. для вузов / Г.И. Рузавин. - М. : Юнити, 2005. - 287 с.

Дубнищева, Т.Я. Концепции современного естествознания. Основной курс в вопросах и ответах: Учеб. пособие для вузов / Т.Я. Дубнищева. - Новосибирск: Сибирское унив. изд-во, 2003. - 407 с.

Лебедев С.А. Концепции современного естествознания. – М.: 2007

Гусейханов, М.К. Концепции современного естествознания: - М. : Дашков и К, 2005. - 692 с.

Суханов А.Д., Голубева О.Н. Концепции современного естествознания. М., 2004

Торосян, В.Г. Концепции современного естествознания: учеб. пособие для вузов / В.Г. Торосян. - М. : Высш. шк., 2003. - 208 с.


Libmonster ID: RU-8780


Первые сведения о Новом Свете без использования, однако, термина "Америка" сохранились на русском языке в рукописи "Инока Максима Грека сказание отчасти недоуменных неких речений в Слове Григория Богослова", относящейся примерно к 1530 году 1 .

Комментируя одну из проповедей этого константинопольского патриарха (329 - 389 гг.), посвященную превосходству христианства над язычеством в различных частях известного тогда мира, Максим Грек без всякой связи с текстом проповеди или какого бы то ни было перехода вспоминает о следующем "недоуменном речении" Григория Богослова: "Еже бо чрез Гадир непрепловно" 2 . "Эллинские мудрецы полагали, что далее Гадира плыть нельзя, так как там югозападный конец земли, море весьма узко, течение его быстрее реки, а с обеих сторон подступили к нему высочайшие береговые горы, называемые "Геркулесовыми столбами", так как до этого места доходил сильнейший и славнейший греческий герой Геркулес, повсюду очищал вселенную от диких всяких зверей, разбойников и злодеев. Древние народы не умели плавать далее Гадира, а главное, не дерзали на это; нынешние же португальцы я испанцы, приняв все меры предосторожности, недавно, лет 40 или 50 тому назад (по истечении седьмой тысячи лет от сотворения мира), начали переплывать на больших кораблях и открыли множество островов, из коих некоторые обитаемы людьми, а другие необитаемы; и землю Кубу, настолько великую по размерам своим, что даже обитатели её не знают, где она кончается. Ещё открыли они, обогнув всю южную сторону и направившись к северо-востоку, по пути в Индию семь островов, называемых Моллукскими. На этих островах произрастает и корица, и гвоздика, и другие ароматные и благовонные растения, которые до той поры неизвестны были ни одному человеку, ныне же всем ведомы, благодаря королям испанскому и португальскому. Государи этих людей тамошних, не знавших дотоле истинного бога и поклонявшихся наиболее твари, а не Творцу, ныне обратим в свою веру, то есть в латинскую, отправив к ним "епископов, учителей и священников и также различных ремесленников и всевозможные здешние семена, и ныне там открылся новый мир и новое собрание человеческое" 3 .

Гадир - Агадир, или Гаддир Карфагенян, - был известен грекам как Гадейра, а римлянам - как Гадес. Это морской порт Кадикс (или более правильно - "Кадис), база испанских флотилий, доставлявших богатства Нового Света. Максим Грек в этом случае смешал Кадис с Гибралтарским проливом - "Геркулесовыми столбами" древних.

"Южская страда" (южная страна) Максима Грека - современная Африка. Из контекста очевидно, что Максиму Греку были известны в общих чертах плавания Васко де Гама (1497 - 1499 гг.) и других португальцев вокруг мыса Доброй Надежды к западному побережью Индии, Малаккскому полуострову (1509 - 1511 гг.), Моллукским островам (1512 г.).

"Однако упоминание о "селян" Моллукских островах ещё не доказывает, что до Максима Грека дошла хотя бы смутные сведе-

1 Максим Грек, светское имя которого было Макарий, родился в Арта (Эпир) около 1470 года. Он получил образование в Париже, Флоренции и Венеции. В Венеции Макарий познакомился с известным гуманистом и издателем - Альдусом Мануциусом. По возвращении в 1507 г. в Грецию Максим принял монашество. В 1518 г. он был направлен в Москву Ватопедской обителью на Афоне для перевода священного писания с греческого на русский язык, по предложению Василия III. Максим Грек умер в 1556 г. в Троице-Сергиевском монастыре.

2 Это выражение встречается у Григория Богослова в "Надгробном слове Василию, архиепископу Кесарии Каппадокийския" (Ч. IV, слово 43). Однако Максим Грек комментирует его в слове Григории "На святые светы явлений Господних" (Творения. Изд. Московской духовной академии. Ч. III, слово 39, стр. 253 - 256. 1844).

3 Сочинения преподобного Максима Грека в русском переводе. Ч. II. Троице-Сергиева лавра. 2911. "Объяснение отчасти неудобопонятных некоторых изречений в Слове Григория Богослова". Цитируемый отрывок на стр. 28 - 29. Русский перевод, по нашему мнению, не всегда точен: например вместо "южная сторона" следовало бы переводить "южная страна"; вместо "ремесленников"- "орудия" (в оригинале "всякое ремество").

стр. 72

ния о плавании Магеллана и Дель Кано (1519 - 1522 гг.). Насколько недостаточны были представления Максима Грека о плавании в современную Индию, показывает его сообщение, что Моллукские острова лежат на пути в Индию, если идти на северовосток от Африки 1 .

В изложении Максима Грека нет отчётливой дифференциации между географическими открытиями испанцев в Вест-Индии и открытиями португальцев в Ост-Индии. Зато Максиму Греку известны другие важные культурно-географические факты, как например перенесение европейцами в Новый Свет "реместв", т. е. своих средств производства, и "всяка семена здешняя", а также получение с Моллукских островов пряностей.

Не лишено интереса, наконец, что Максим Грек называет "землю величайшу глаголемую Куба". Это первый географический термин на русском языке, относящийся к Новому Свету. "Земля Куба" представляет, по Максиму Греку, часть материка, "еяже конца не ведают тамо живущей". Как известно, Колумб, открывший остров Кубу 28 октября 1492 г., также считал его частью Восточной Азот.

Из цитированного отрывка "Оказания инока Максима Грека" очевидно, что он не знал названия нового континента - Америки, - хотя уже пользовался термином "Новый Свет".

Нет необходимости теряться в догадках, каким путём дошли до Максима Грека эти известия об открытии Нового Света, а также пути вокруг Африки в Индию и получении пряностей с Моллукских островов. В конце XV - первом десятилетии XVI в. Максим Грек учился во Франции и Италии и был современником великих событий. Московская Русь начала XVI в. вовсе не была абсолютно изолирована от связей с Западом: достаточно напомнить о двукратном посольстве С. Герберштейна - а 1517 и 1526 гг. - в Москву и посольстве Герасимова в Рим в 1525 году. Эллинизированная транскрипция Моллукских островов также указывает на греческие каналы, по которым была получены русскими первые сведения о великих географических открытиях испанцев и португальцев. Важнее установить, что в условиях Московской Руси Максим Грек сумел получить в общем правильные представления о великих географических открытиях испанцев и португальцев конца XV - начала XVI столетия и пользовался термином "Новый Свет".

В отношении даты "Сказания" Максима Грека имеются прямые указания с его стороны. Максим Грек относит плавания испанцев и португальцев "за Гадес" к моменту, наступившему через сорок или пятьдесят лет по истечении седьмого тысячелетия от "сотворения мира", т. е. именно к 1492 г., по современному летосчислению. Это даёт основание отнести дату написания "Сказания" инока Максима Грека, - по-видимому наиболее раннего из сохранившихся документов, относящихся к первым сведениям русских о Новом Свете, - примерно к 1530 г., т. е. спустя сорок лет после плавания Колумба на запад и через тридцать лет после третьей экспедиции Америго Веспуччи (1501 - 1502 гг.).

Широкое распространение сочинений Максима Грека в Московской Руси обеспечивало проникновение в различные слои русского общества XVI в. сведений о великих географических открытиях испанцев и португальцев, в частности об открытии Нового Света 2 .

После посещения англичанином Ченслором Москвы в 1554 г., путешествия Дженкинсона через Московию в Персию в Среднюю Азию (1557 и 1562 гг.) и ряда экспедиций голландцев, из которых наиболее замечательной была экспедиция Баренца 1596 - 1597 гг., создались новые возможности для торговых и культурных отношений русских с европейцами.

Как англичане, так и голландцы в этот период искали северовосточный проход к рынкам Японии, Китая, Индии. Этой цели они, как известно, не достигли. Вместо Китая и Индии был открыт северный путь в Московию. Экспедиция Уиллоуби и Ченслора 1553 - 1554 гг., снаряженная "Компанией и Товариществом отважных купцов для открытия районов, владений, островов и неизвестных мест" (The Company and Fellowship of merchant Adventurers for the discovery of unknown lands, etc.), стала называться "Московской, или Российской, компанией". Один из прежних спутников Ченслора - Барроу - в 1556 г. достиг о. Вайгач и проник в Карское море. Конкуренты англичан - голландцы - в свою очередь, к 1577 г. установили через Белое море прочные торговые связи с Московией. В 1584 г. голландец (из Энкгюйзена) Олавер Брунель, который находился в плену у Строгановых и по их поручению ездил за Урал к Оби и в другие местности на севере, сообщил обстоятельные сведения о "земле самоедов" 3 . В задачу экспедиции

1 Максим Грек следует в этом случае средневековым представлениям о "Верхней Индии", которую полагали лежащей к северу от Китая. Эти представления удерживались и в начале нового времени (см. карту мира Мюнстера 1540 г., воспроизведенную в книге Л. Багрова "История географической карты", стр. 22. Петроград. 1917). В этой связи очевидно, что выражение Максима Грека "до востока солнца зимняго ко Индии" расшифровывается как к северовостоку в направлении к Верхней Индии (India Superior).

2 Белокуров С. "О библиотеке московских государей в XVI столетии", стр. CCXX- CCCCXIV. М. 1899. О распространённости сочинений Максима Грека свидетельствуют, например, сохранившиеся к концу XIX в. около 250 рукописных копий в 50 различных библиотеках и частных коллекциях.

3 Гомель И. "Англичане в России", стр. 211 - 213, 219. СПБ. 1869.

стр. 73

Линехотена и Баренца (1594 г.) прямо входило "плыть в Северные моря для открытия царств Катая и Китая на север от Норвегии, Московии и вокруг Тартарии" 1 .

Однако географические представления в Московской Руси развивались не только в результате усиления контакта с иностранцами, но и вследствие укрепления государства в центре и роста колонизации окраин, особенно на севере и востоке, "Изумлённая Европа, в начале княжения Ивана III едва ли даже подозревавшая о существовании Московии, зажатой между Литвой и татарами, была ошеломлена появлением огромной империи на восточных своих окраинах" 2 .

И всё же в отношении великих открытий в Новом Свете и в других частях мира введения русских в XVI в. продолжали ещё носить отрывочный характер. Лишь через полвека после "Сказания инока Максима Грека", упоминающего о Новом Свете, а Москве был закончен перевод польской "Хроники всего мире" М. Вельского. В этой "Хронике" новый континент впервые на русском языке называется Америкой.

Польский оригинал "Хроники" Вельского вышел первым изданием в 1560 году. Русские переводы делались со второго издания этой "Хроники", 1554 г., и третьего издания, 1564 года. Первый из сохранившихся переводов "Хроники" Вельского на русский язык датирован 1584 г. и сделан не с польского, а с западнорусского языка. Имеется ряд других переводов "Хроники" Вельского на русский язык.

Рукописная копия русского перевода "Хроники" Вельского, хранящаяся в Ленинградской Публичной библиотеке, представляет фолиант, состоящий из 1347 пронумерованных листов размером 29х38 сантиметров. Начало снятия копии датировано 1671 годом. Иллюстрации, имевшиеся в польском оригинале, в этой копии отсутствуют. Пустые места, оставленные для их наклейки, свидетельствуют, что иллюстрации брались из печатных текстов "Хроники". Русская копия написана скорописью.

Исследованию Америки посвящено шесть глав, занимающих листы 1213 - 1245. На листе 1304 даётся описание Нового Света. Раздел об Америке озаглавлен "О островах морских Новых" которых прозывают Ново"Свет на восток Слнца и на Запад Снца и на полден инаполунощ, окоторых островех и мудрыа философи старые немогли изведати".

Русский перевод, как правило, близко следует оригиналу, хотя встречаются сокращения, неточности, описки ("камбалы" вместо "канибалы"), недопустимые упрощения (например "унции" вместо "фунты", вместо миль - вёрсты).

В духе того времени большое место уделено повествованию о каннибалах. Немало в "Хронике" Вельского и в русском переводе её баснословных сведений о Новом Свете. Например рассказывается, что брат Христофора Колумба, Варфоломей, открыл на Испаньоле (о. Гаити) золотые месторождения, которые разрабатывались царём Соломоном.

В разделе об Америке "Хроники" Вельского излагались краткие сведения о тех, кто впервые её открыл и исследовал, о географии и туземцах новооткрытых земель. При этом в "Хронике" ещё не проводится достаточно отчётливого разделения между открытиями в Вест- и Ост-Индии.

Раздел о Новом Свете начинается с описания первого путешествия Христофора Колумба. По-видимому, это - самое раннее упоминание о Колумбе из сохранявшихся памятников русской литературы 3 . В "Хронике" сообщается ряд общих сведений о Колумбе: о том, что он итальянец, родом из "Енова" (Генуя); что, получив суда от испанского короля, Колумб отплыл 1 сентября 1498 г, из Испании и через тридцать два дня плавания открыл два острова: о. Иоанна, названный якобы в честь королевы испанской (в действительности - в честь наследника Хуана), и о. Испаина, или Ишпанна, - современный о. Испаньола" или Гаити 4 . В дальнейшем упоминается о. Куба, как не имеющий ничего общего с о. Иоанна (Хуана) Остров Иоанна, т. е. современная Куба, характеризуется как не имеющий населения; наоборот, о населении о. Ишпанна (о. Гаити) даются довольно состоятельные сведения.

Хронологические сведения о первой экспедиции Колумба в "Хронике" Вельского далеки от точности. Как известно, суда этой экспедиции вышли из порта Палое де ла Фронтера в Испании 3 августа 1491 года, 2 сентября они соединились у о. Хо-

1 Baker G. A history of geographical Discovery and Exploration, p. 122 - 123. 4930. Тартарией, илл Татарией, в XVI-XVIII столетиях называли Сибирь, или северную и северовосточную части Азии.

2 К. Маркс. "Секретная дипломатия XVIII века".

3 Yarmolinsky A. Studies in Russian Americana: I. "The Translation of Bielski Chronicle (1584). - Bulletin of the New York Public Library. Vol. 43. 1939, N 12 p. 899.

4 Как известно, Колумб отплыл из порта Палое де ла Фронтера в Исламе" 2 августа 1492 года. Через 33 неполных дня плавания, считая с момента прекращения штиля у Канарских островов, на судах экспедиции Колумба были впервые замечены огни новой земли. 12 октября 1492 г. Колумб высадился на о. Гуанахани, в группе Бермудских островов. Остров Гуанахана, названный Колумбом о. Сан-Сальвадор, - по-видимому, современный о. Уотлинг.

стр. 74

мера, в группе Канарских островов, и 6 сентября 1492 г. отплыли отсюда на запад. В ночь на 12 октября 1492 г. на кораблях экспедиции Колумба были замечены первые огни, и 12 октября Колумб впервые вступил на небольшой остров, названный им Сан-Сальвадор (Спаситель). Этот островок в группе Багамских, - по-видимому, современный о. Уотлинг - не имел ничего общего ни с о. Иоанна (Кубой), ни с о. Испанна (Испаньолой, или Гаити), которые первая экспедиция Колумба открыла позднее.

В русском переводе "Хроники" Вельского даются также сведения о второй и третьей экспедициях Колумба. При описании второго путешествия упоминаются острова Доминика, Санта-Крус и др., а также форт Томасо на Испаньоле.

В отличие от путаной и далеко не точной хронологии событий, связанных с предшествующими путешествиями Колумба, дата его третьего путешествия указывается верно; зато географические сведения, относящиеся к третьему путешествию Колумба, иногда принимают фантастический оттенок: например вместо залива Пария между о. Тринидад и южноамериканским континентом появился "остров Пария". При этом, следуя польскому оригиналу, в русском переводе испанские имена спутников Колумба латинизированы или сильно искажены: вместо "Роланд" стоит "Орландус", вместо "Педро Алонсо Ниньо" - "Петрус Алонцус", вместо "Пинсон" - "Пинцонус".

Остальная часть раздела об Америке посвящена плаваниям Веспуччи. Она начинается с сообщения о третьем путешествии, которое в 1501 г. совершил "Алберикус веспузиус ишпан". Затем идёт изложение открытий португальцев в Ост-Индии, включая плавание Магеллана, После этого следуют четыре главы, описывающие соответствующие действительные и сомнительные путешествия Веспуччи. Этим главам предшествует общее вступление-заголовок (лист 1238) "О походе амърикуса Веспуцыа; Амъмерикус прозван именем отвеликого острова америка, атот остров мошно прозвать за четвёртую часть света: а нашёл тот остров аммерикус веспуцыа" 1 .

Источники "Хроники" Вельского об Америке показывают новый канал получения географических сведений в Московской Руси XVI столетия. Это уже не религиозные источники, а книги, печатавшиеся в Базеле и составленные гуманистами. Через Польшу и Литву, пройдя этап предварительного перевода на западнорусский язык или путём непосредственного перевода польской "Хроники" Вельского на русский язык. Московская Русь получала более детальные и дополнительные сведения о великих географических открытиях, в том числе о плаваниях Америго Веспуччи и Магеллана дель Кано (1519 - 1522 гг.).

Новый подъём русской колонизации Сибири в XVII в., укрепление Московского государства после кризиса 1598 - 1613 гг., расширение экономических и культурных связей с Западом вызвали большой интерес русских к иностранным географическим и картографическим изданиям. "Что было переведено в Москве в XVII веке? Всего более интересовались географией. Все лучшие, труды по этой науке общего характера, явившиеся в Западной Европе в конце XVI и в XVII веке, были у нас переведены. Это сочинения Ботеро, Ортелиуса, Меркатора де Линда, огромный амстердамский атлас Блеу, ещё несколько сочинений, оригиналы (а вместе и авторы) которых нам неизвестны" 2 . В конце XVII в. были переведены и пользовались широким распространением в Московской Руси другие голландские атласы: (напр. - P. Goos u Da Wit.). Таким образом, образованные русские в XVII в. знали уже о Новом Свете всё, что было известно о нём европейцам в ту эпоху. https://сайт/Sechin

Искать материалы публикатора в системах: Либмонстр (весь мир) . Google . Yandex

Любовь