Формула для определения длины. Как найти длину окружности: через диаметр и радиус

1. Сложнее найти длину окружности через диаметр , по этому сначала разберём этот вариант.

Пример: Найдите длину окружности диаметр которой равен 6 см . Мы используем приведённую выше формулу длины окружности, только сначала нам необходимо найти радиус. Для этого мы делим диаметр 6 см на 2 и получаем радиус окружности 3 см.

После этого всё предельно просто: Умножаем число Пи на 2 и на полученный радиус в 3 см.
2 * 3,14 * 3 см = 6,28 * 3см = 18,84 см.

2. А теперь ещё раз разберём простой вариант найдите длину окружности радиус равен 5 см

Решение: Радиус 5 см умножаем на 2 и умножаем на 3,14. Не пугайтесь, ведь перестановка местами множителей не влияет на результат, и формулу длины окружности можно применять в любой последовательности.

5см * 2 * 3,14 = 10 см * 3,14 = 31.4 см - это найденная длина окружности для радиуса 5 см!

Онлайн калькулятор длины окружности

Наш калькулятор длины окружности произведёт все эти не хитрые вычисления мгновенно и распишет решение в строку и с комментариями. Мы рассчитаем длину окружности для радиуса 3, 5, 6, 8 или 1 см, или диаметр равен 4, 10, 15, 20 дм, нашему калькулятору без разницы для какого значения радиуса найти длину окружности.

Все вычисления будут точными, оттестированными специалистами математиками. Результаты можно использовать в решении школьных задач по геометрии или математике, а также при рабочих расчётах в строительстве или в ремонте и отделке помещений, когда требуются точные вычисления по этой формуле.

Окружность встречается в повседневной жизни не реже, чем прямоугольник. А у многих людей задача о том, как рассчитать длину окружности, вызывает затруднение. И все потому, что у нее нет углов. При их наличии все стало бы намного проще.

Что такое окружность и где она встречается?

Эта плоская фигура представляет собой некоторое количество точек, которые расположены на одинаковом удалении от еще одной, которая является центром. Это расстояние называется радиусом.

В повседневной жизни нечасто приходится вычислять длину окружности, кроме людей, которые являются инженерами и конструкторами. Они создают проекты механизмов, в которых используются, например, шестеренки, иллюминаторы и колеса. Архитекторы создают дома, имеющие круглые или арочные окна.

В каждом из этих и других случаях требуется своя точность. Причем высчитать длину окружности совершенно точно оказывается невозможно. Связано это с бесконечностью основного числа, имеющегося в формуле. «Пи» до сих пор уточняется. И используется чаще всего округленное значение. Степень точности выбирается такой, чтобы дать максимально верный ответ.

Обозначения величин и формулы

Теперь легко ответить на вопрос о том, как рассчитать длину окружности по радиусу, для этого потребуется такая формула:

Поскольку радиус и диаметр связаны друг с другом, то есть и другая формула для расчетов. Так как радиус в два раза меньше, то выражение немного видоизменится. И формула того, как рассчитать длину окружности, зная диаметр, будет следующей:

l = π * d.

Как быть, если нужно вычислить периметр круга?

Просто вспомнить, что круг включает в себя все точки внутри окружности. А значит, его периметр совпадает с ее длиной. И после того, как рассчитать длину окружности, поставить знак равенства с периметром круга.

Кстати, и обозначения у них такие же. Это касается радиуса и диаметра, а периметром является латинская буква P.

Примеры заданий

Задача первая

Условие. Узнать длину окружности, радиус которой равен 5 см.

Решение. Здесь несложно понять, как рассчитать длину окружности. Нужно только воспользоваться первой формулой. Поскольку радиус известен, то потребуется только подставить значения и сосчитать. 2 умноженное на радиус, равный 5 см, даст 10. Осталось еще умножить его на значение π. 3,14 * 10 = 31,4 (см).

Ответ: l = 31,4 см.

Задача вторая

Условие. Имеется колесо, длина окружности которого известна и равна 1256 мм. Необходимо вычислить его радиус.

Решение. В этом задании потребуется воспользоваться той же формулой. Но только известную длину нужно будет разделить на произведение 2 и π. Получается, что произведение даст результат: 6,28. После деления остается число: 200. Это искомая величина.

Ответ: r = 200 мм.

Задача третья

Условие. Вычислить диаметр, если известна длина окружности, которая равна 56,52 см.

Решение. Аналогично предыдущей задаче потребуется разделить известную длину на значение π, округленное до сотых. В результате такого действия получается число 18. Результат получен.

Ответ: d = 18 см.

Задача четвертая

Условие. Стрелки часов имеют длину 3 и 5 см. Нужно вычислить длины окружностей, которые описывают их концы.

Решение. Поскольку стрелки совпадают с радиусами окружностей, то потребуется первая формула. Ею нужно воспользоваться два раза.

Для первой длины произведение будет состоять из множителей: 2; 3,14 и 3. Итогом будет число 18,84 см.

Для второго ответа нужно перемножить 2, π и 5. Произведение даст число: 31,4 см.

Ответ: l 1 = 18,84 см, l 2 = 31,4 см.

Задача пятая

Условие. Белка бегает в колесе диаметром 2 м. Какое расстояние она пробегает за один полный оборот колеса?

Решение. Это расстояние равно длине окружности. Поэтому нужно воспользоваться подходящей формулой. А именно перемножить значение π и 2 м. Подсчеты дают результат: 6,28 м.

Ответ: Белка пробегает 6,28 м.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD

Ее диаметр.Для этого только надо применить формулу длины окружности.L = п DЗдесь:L – длина окружности,п – число Пи, равное 3.14,D – диаметр окружности.Переставьте в формуле длины окружности искомое в левую часть и получите:D = L/п

Разберем практическую задачу. Предположим, вам необходимо изготовить крышку на круглый дачный колодец, доступа к которому в данный момент нет. Не , и неподходящие погодные условия. Но у вас есть данные по длине его окружности. Предположим, это 600 см.В указанную формулу подставляем значения:D = 600/3,14 = 191.08 см.Итак, 191 см диаметр вашего .Увеличивайте диаметр до 2-х с учетом припуска за края. Устанавливайте циркуль на радиус 1 м (100 см) и вычерчивайте окружность.

Полезный совет

Окружности сравнительно больших диаметров в домашних условиях удобно вычерчивать циркулем, который быстро можно изготовить. Делается это так. В рейку вбивается два гвоздя на расстоянии друг от друга, равному радиусу окружности. Один гвоздь неглубоко вбейте в заготовку. А другой используйте, вращая рейку, в качестве маркера.

Окружностью называется геометрическая фигура на плоскости, которая состоит из всех точек этой плоскости находящихся на одинаковом расстоянии от заданной точки. Заданная точка при этом называется центром окружности , а расстояние, на котором точки окружности находятся от её центра – радиусом окружности . Область плоскости ограниченная окружностью называется кругом.Существует несколько методов расчёта диаметра окружности , выбор конкретного зависти от имеющихся первоначальных данных.

Инструкция

В простейшем случае, если окружность радиуса R, то её будет равен
D = 2 * R
Если радиус окружности не известен, но известна её , то диаметр можно вычислить по формуле длины окружности
D = L/П, где L – длина окружности , П – П.
Так же диаметр окружности можно рассчитать, зная площадь ею ограниченной
D = 2 * v(S/П), где S – площадь круга, П – число П.

Источники:

  • диаметр круга расчет

В курсе планиметрии средней школы, понятие окружность определяется как геометрическая фигура, состоящая из всех точек плоскости лежащих на расстоянии радиуса от точки, называемой её центром. Внутри окружности можно провести множество отрезков, различным образом соединяющих её точки. В зависимости от построения этих отрезков, окружность можно поделить на несколько частей разными способами.

Инструкция

Наконец, окружность можно поделить построением сегментов. Сегментом часть окружности, составленная из хорды и дуги окружности. Хордой в этом случае является отрезок, соединяющий любые две точки окружности. С помощью сегментов окружность можно поделить на бесконечное множество частей с образованием или без в его центре.

Видео по теме

Обратите внимание

Полученные перечисленными способами фигуры – многоугольники, сегменты и сектора, можно также разделить, использую соответствующие методы, например, диагонали многоугольников или биссектрисы углов.

Кругом называют плоскую геометрическую фигуру, а линию, ее ограничивающую, принято называть окружностью. Основное свойство заключается в том, что каждая точка на этой линии находится на одинаковом расстоянии от центра фигуры. Отрезок с началом в центре круга и окончанием на любой из точек окружности называется радиусом, а отрезок, соединяющий две точки окружности и проходящий через центр - диаметром.

Инструкция

Используйте число Пи для нахождения длины диаметра по известной длине окружности. Эта константа выражает постоянное соотношение между этими двумя параметрами круга - независимо от размеров круга, деление длины его окружности на длину диаметра всегда дает одно и то же число. Из этого вытекает, что для нахождения длины диаметра следует длину окружности разделить на число Пи. Как правило, для практических вычислений длины диаметра достаточно точности до сотых единицы, то есть до двух знаков после запятой, поэтому число Пи можно считать равным 3,14. Но так как эта константа является числом иррациональным, то имеет бесконечное число знаков после запятой. Если возникнет необходимость в более точном определении , то нужное число знаков для пи можно найти, например, по этой ссылке - http://www.math.com/tables/constants/pi.htm .

При известных длинах сторон (a и b) прямоугольника, вписанного в круг, длину диаметра (d) можно вычислить, найдя длину диагонали этого прямоугольника. Поскольку диагональ здесь является гипотенузой в прямоугольном треугольнике, катеты которого образуют стороны известной длины, то по теореме Пифагора длину диагонали, а вместе с ней и длину диаметра описанной окружности, можно рассчитать, найдя из суммы квадратов длин известных сторон: d=√(a² + b²).

Деление на несколько равных частей - часто встречающаяся задача. Так можно построить правильный многоугольник, начертить звезду или подготовить основу для схемы. Есть несколько способов решения этой интересной задачи.

Вам понадобится

  • - окружность с обозначенным центром (если центр не обозначен, вам придется найти его любым способом);
  • - транспортир;
  • - циркуль с грифелем;
  • - карандаш;
  • - линейка.

Инструкция

Самый простой способ разделить окружность на равные части - при помощи транспортира. Разделив 360° на нужное число частей, вы получите угол . Начните с любой точки на окружности - соответствующий ей радиус будет нулевой отметкой. Начиная с него, делайте по транспортиру отметки, соответствующие вычисленному углу.Этот способ рекомендуется, если вам нужно разделить окружность на пять, семь, девять и т.д. частей. Например, для построения правильного пятиугольника его вершины должны располагаться через каждые 360/5 = 72°, то есть на отметках 0°, 72°, 144°, 216°, 288°.

Чтобы разделить окружность на шесть частей, можно воспользоваться свойством правильного - его длиннейшая диагональ равна удвоенной стороне. Правильный шестиугольник как бы составлен из шести равносторонних треугольников.Установите раствор циркуля, равный радиусу окружности, и делайте им засечки, начиная с любой произвольной точки. Засечки образуют правильный шестиугольник, одна из вершин которого будет находиться в этой точке.Соединив вершины через одну, вы построите правильный треугольник, вписанный в окружность , то есть ее на три равные части.

Чтобы разделить окружность на четыре части, начните с произвольного диаметра. Его концы дадут две из необходимых четырех точек. Чтобы найти остальные, установите раствор циркуля, равный окружности. Поставив иглу циркуля на один из концов диаметра, сделайте засечки за пределами окружности и снизу. Повторите то же самое с другим концом диаметра.Проведите вспомогательную линию между точками пересечения засечек. Она даст вам второй диаметр, строго перпендикулярный исходному. Его концы станут остальными двумя вершинами квадрата, вписанного в окружность .

При помощи метода, описанного выше, можно найти середину любого отрезка. Как следствие, этим методом можно удвоить число равных частей, на которые вы окружность . Найдя середину каждой стороны правильного n- , вписанного в окружность , вы можете провести к ним перпендикуляры, найти точку их пересечения с окружность ю и таким образом построить вершины правильного 2n-угольника. Эту процедуру можно повторять угодно раз. Так, квадрат превращается в , тот - в и т.д. Начав с квадрата, вы можете, например, разделить окружность на 256 равных частей.

Обратите внимание

Для деления окружности на равные части обычно применяют делительные головки или делительные столы, позволяющие разделить окружность на равные части с высокой точностью. Когда необходимо разделить окружность на равные части пользуются приведенной ниже таблицей. Для этого нужно умножить диаметр делимой окружности на коэффициент, приведенный в таблице: К х D.

Полезный совет

Деление окружности на три, шесть и двенадцать равных частей. Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части; Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.

При проведении построений различных геометрических фигур иногда требуется определить их характеристики: длину, ширину, высоту и так далее. Если речь идет о круге или окружности, то часто приходится определять их диаметр. Диаметр представляет собой отрезок прямой, который соединяет две наиболее удаленных друг от друга точки, расположенные на окружности.

Вам понадобится

  • - измерительная линейка;
  • - циркуль;
  • - калькулятор.

Часто звучит, как часть плоскости, которая ограничена окружностью. Окружность круга является плоской замкнутой кривой. Все точки, расположенные на кривой, удалены от центра круга на одинаковое расстояние. В круге его длина и периметр одинаковы. Соотношение длины любой окружности и ее диаметра постоянное и обозначается числом π = 3,1415 .

Определение периметра круга

Периметр круга радиуса r равен удвоенному произведению радиуса r на число π(~3.1415)

Формула периметра круга

Периметр круга радиуса \(r\) :

\[ \LARGE{P} = 2 \cdot \pi \cdot r \]

\[ \LARGE{P} = \pi \cdot d \]

\(P \) – периметр (длина окружности).

\(r \) – радиус.

\(d \) – диаметр.

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Центром окружности будем называть точку, которая задается в рамках определения 1.

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки.

В декартовой системе координат \(xOy \) мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой \(X \) , которая будет иметь координаты \((x_0,y_0) \) . Пусть радиус этой окружности равняется \(τ \) . Возьмем произвольную точку \(Y \) , координаты которой обозначим через \((x,y) \) (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

\(|XY|=\sqrt{(x-x_0)^2+(y-y_0)^2} \)

С другой стороны, \(|XY| \) - это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что \(|XY|=τ \) , следовательно

\(\sqrt{(x-x_0)^2+(y-y_0)^2}=τ \)

\((x-x_0)^2+(y-y_0)^2=τ^2 \) (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности \(C \) с помощью её радиуса, равного \(τ \) .

Будем рассматривать две произвольные окружности. Обозначим их длины через \(C \) и \(C" \) , у которых радиусы равняются \(τ \) и \(τ" \) . Будем вписывать в эти окружности правильные \(n \) -угольники, периметры которых равняются \(ρ \) и \(ρ" \) , длины сторон которых равняются \(α \) и \(α" \) , соответственно. Как мы знаем, сторона вписанного в окружность правильного \(n \) – угольника равняется

\(α=2τsin\frac{180^0}{n} \)

Тогда, будем получать, что

\(ρ=nα=2nτ\frac{sin180^0}{n} \)

\(ρ"=nα"=2nτ"\frac{sin180^0}{n} \)

\(\frac{ρ}{ρ"}=\frac{2nτsin\frac{180^0}{n}}{2nτ"\frac{sin180^0}{n}}=\frac{2τ}{2τ"} \)

Получаем, что отношение \(\frac{ρ}{ρ"}=\frac{2τ}{2τ"} \) будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

\(\lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{2τ}{2τ"} \)

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть \(n→∞ \) ), будем получать равенство:

\(lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{C}{C"} \)

Из последних двух равенств получим, что

\(\frac{C}{C"}=\frac{2τ}{2τ"} \)

\(\frac{C}{2τ}=\frac{C"}{2τ"} \)

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

\(\frac{C}{2τ}=const \)

Эту постоянную принять называть числом «пи» и обозначать \(π \) . Приближенно, это число будет равняться \(3,14 \) (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

\(\frac{C}{2τ}=π \)

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

\(C=2πτ \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Психология