Бактерии группы кишечной палочки (бгкп — колиформные бактерии). Колиформные бактерии в воде

1. Обзор литературных источников

.1 Систематика кишечной палочки

Научная классификация

Домен: Бактерии

Тип: Протеобактерии

Класс: Гамма-протеобактерии

Порядок: Enterobacteriales

Семейство: Энтеробактерии

Род: Escherichia

Вид: Coli (Кишечная палочка)

Международное научное название

Escherichia coli (Migula 1895)

1.2 Строение и химический состав бактериальной клетки

Внутренняя организация бактериальной клетки сложна. Каждая систематическая группа микроорганизмов имеет свои специфические особенности строения.

Клетка бактерий одета плотной оболочкой. Этот поверхностный слой, расположенный снаружи от цитоплазматической мембраны, называют клеточной стенкой. Стенка выполняет защитную и опорную функции, а также придает клетке постоянную, характерную для нее форму (например, форму палочки или кокка) и представляет собой наружный скелет клетки. Эта плотная оболочка роднит бактерии с растительными клетками, что отличает их от животных клеток, имеющих мягкие оболочки. Внутри бактериальной клетки осмотическое давление в несколько раз, а иногда и в десятки раз выше, чем во внешней среде. Поэтому клетка быстро разорвалась бы, если бы она не была защищена такой плотной, жесткой структурой, как клеточная стенка.

Толщина клеточной стенки 0,01-0,04 мкм. Она составляет от 10 до 50% сухой массы бактерий. Количество материала, из которого построена клеточная стенка, изменяется в течение роста бактерий и обычно увеличивается с возрастом.

Основным структурным компонентом стенок, основой их жесткой структуры почти у всех исследованных до настоящего времени бактерий является муреин (гликопептид, мукопептид). Это органическое соединение сложного строения, в состав которого входят сахара, несущие азот, - аминосахара и 4-5 аминокислот. Причем аминокислоты клеточных стенок имеют необычную форму (D-стереоизомеры), которая в природе редко встречается.

С помощью способа окраски, впервые предложенного в 1884 г. Кристианом Грамом, бактерии могут быть разделены на двегруппы: грамположительныеиграмотрицательные.

Грамположительные организмы способны связывать некоторые анилиновые красители, такие, как кристаллический фиолетовый, и после обработки иодом, а затем спиртом (или ацетоном) сохранять комплекс иод-краситель. Те же бактерии, у которых под влиянием этилового спирта этот комплекс разрушается (клетки обесцвечиваются), относятся к грамотрицательным.

Химический состав клеточных стенок грамположительных и грамотрицательных бактерий различен. У грамположительных бактерий в состав клеточных стенок входят, кроме мукопептидов, полисахариды (сложные, высокомолекулярные сахара), тейхоевые кислоты (сложные по составу и структуре соединения, состоящие из сахаров, спиртов, аминокислот и фосфорной кислоты). Полисахариды и тейхоевые кислоты связаны с каркасом стенок - муреином. Какую структуру образуют эти составные части клеточной стенки грамположительных бактерий, мы пока еще не знаем. С помощью электронных фотографий тонких срезов (слоистости) в стенках грамположительных бактерий не обнаружено. Вероятно, все эти вещества очень плотно связаны между собой.

В стенках грамотрицательных содержится значительное количество липидов (жиров), связанных с белками и сахарами в сложные комплексы - липопротеиды и липополисахариды. Муреина в клеточных стенках грамотрицательных бактерий в целом меньше, чем у грамположительных бактерий. Структура стенки грамотрицательных бактерий также более сложная. С помощью электронного микроскопа было установлено, что стенки этих бактерий многослойные.

Внутренний слой состоит из муреина. Над ним находится более широкий слой из не плотно упакованных молекул белка. Этот слой в свою очередь покрыт слоем липополисахарида. Самый верхний слой состоит из липопротеидов.

Клеточная стенка проницаема: через нее питательные вещества свободно проходят в клетку, а продукты обмена выходят в окружающую среду. Крупные молекулы с большим молекулярным весом не проходят через оболочку.

Клеточная стенка многих бактерий сверху окружена слоем слизистого материала - капсулой. Толщина капсулы может во много раз превосходить диаметр самой клетки, а иногда она настолько тонкая, что ее можно увидеть лишь через электронный микроскоп, - микрокапсула.

Капсула не является обязательной частью клетки, она образуется в зависимости от условий, в которые попадают бактерии. Она служит защитным покровом клетки и участвует в водном обмене, предохраняя клетку от высыхания.

По химическому составу капсулы чаще всего представляют собой полисахариды. Иногда они состоят изгликопротеидов (сложные комплексы сахаров и белков) и полипептидов (род Bacillus), в редких случаях - из клетчатки (род Acetobacter).

Слизистые вещества, выделяемые в субстрат некоторыми бактериями, обусловливают, например, слизисто-тягучую консистенцию испорченного молока и пива.

Все содержимое клетки, за исключением ядра и клеточной стенки, называется цитоплазмой. В жидкой, бесструктурной фазе цитоплазмы (матриксе) находятся рибосомы, мембранные системы, митохондрии, пластиды и другие структуры, а также запасные питательные вещества. Цитоплазма обладает чрезвычайно сложной, тонкой структурой (слоистая, гранулярная). С помощью электронного микроскопа раскрыты многие интересные детали строения клетки.

Внешний липопротвидный слой протопласта бактерий, обладающий особыми физическими и химическими свойствами, называется цитоплазматической мембраной.

Внутри цитоплазмы находятся все жизненно важные структуры и органеллы.

Цитоплазматическая мембрана выполняет очень важную роль - регулирует поступление веществ в клетку и выделение наружу продуктов обмена.

Через мембрану питательные вещества могут поступать в клетку в результате активного биохимического процесса с участием ферментов. Кроме того, в мембране происходит синтез некоторых составных частей клетки, в основном компонентов клеточной стенки и капсулы. Наконец, в цитоплазматической мембране находятся важнейшие ферменты (биологические катализаторы). Упорядоченное расположение ферментов на мембранах позволяет регулировать их активность и предотвращать разрушение одних ферментов другими. С мембраной связаны рибосомы - структурные частицы, на которых синтезируется белок. Мембрана состоит из липопротеидов. Она достаточно прочна и может обеспечить временное существование клетки без оболочки. Цитоплазматическая мембрана составляет до 20% сухой массы клетки.

На электронных фотографиях тонких срезов бактерий цитоплазматическая мембрана представляется в виде непрерывного тяжа толщиной около 75A, состоящего из светлого слоя (липиды), заключенного между двумя более темными (белки). Каждый слой имеет ширину 20-30А. Такая мембрана называется элементарной.

Между плазматической мембраной и клеточной стенкой имеется связь в виде десмозов - мостиков. Цитоплазматическая мембрана часто дает инвагинации - впячивания внутрь клетки. Эти впячивания образуют в цитоплазме особые мембранные структуры, названные мезосомами.Некоторые виды мезосом представляют собой тельца, отделенные от цитоплазмы собственной мембраной. Внутри таких мембранных мешочков упакованы многочисленные пузырьки и канальцы. Эти структуры выполняют у бактерий самые различные функции. Одни из этих структур - аналоги митохондрий. Другие выполняют функции зндоплазматической сети или аппарата Гольджи. Путем инвагинации цитоплазматической мембраны образуется также фотосинтезирующий аппарат бактерий. После впячивания цитоплазмы мембрана продолжает расти и образует стопки, которые по аналогии с гранулами хлоропластов растений называют стопками тилакоидов. В этих мембранах, часто заполняющих собой большую часть цитоплазмы бактериальной клетки, локализуются пигменты (бактериохлорофилл, каротиноиды) и ферменты (цитохромы), осуществляющие процесс фотосинтеза.

В цитоплазме бактерий содержатся рибосомы - белок-синтезирующие частицы диаметром 200А. В клетке их насчитывается больше тысячи. Состоят рибосомы из РНК и белка. У бактерий многие рибосомы расположены в цитоплазме свободно, некоторые из них могут быть связаны с мембранами.

В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Однако их присутствие нельзя рассматривать как какой-то постоянный признак микроорганизма, обычно оно в значительной степени связано с физическими и химическими условиями среды. Многие цитоплазматические включения состоят из соединений, которые служат источником энергии и углерода. Эти запасные вещества образуются, когда организм снабжается достаточным количеством питательных веществ, и, наоборот, используются, когда организм попадает в условия, менее благоприятные в отношении питания.

У многих бактерий гранулы состоят из крахмала или других полисахаридов - гликогена и гранулезы. У некоторых бактерий при выращивании на богатой сахарами среде внутри клетки встречаются капельки жира. Другим широко распространенным типом гранулярных включений является волютин (метахроматиновые гранулы). Эти гранулы состоят из полиметафосфата (запасное вещество, включающее остатки фосфорной кислоты). Полиметафосфат служит источником фосфатных групп и энергии для организма. Бактерии чаще накапливают волютин в необычных условиях питания, например на среде, не содержащей серы. В цитоплазме некоторых серных бактерий находятся капельки серы.

Помимо различных структурных компонентов, цитоплазма состоит из жидкой части - растворимой фракции. В ней содержатся белки, различные ферменты, т-РНК, некоторые пигменты и низкомолекулярные соединения - сахара, аминокислоты.

В результате наличия в цитоплазме низкомолекулярных соединений возникает разность в осмотическом давлении клеточного содержимого и наружной среды, причем у разных микроорганизмов это давление может быть различным. Наибольшее осмотическое давление отмечено у грамположительных бактерий - 30 атм, у грамотрицательных бактерий оно гораздо ниже 4-8 атм.

В центральной части клетки локализовано ядерное вещество - дезоксирибонуклеиновая кислота (ДНК).

У бактерий нет такого ядра, как у высших организмов (эукариотов), а есть его аналог - «ядерный эквивалент» - нуклеоид, который является эволюционно более примитивной формой организации ядерного вещества. Микроорганизмы, не имеющие настоящего ядра, а обладающие его аналогом, относятся к прокариотам. Все бактерии - прокариоты. В клетках большинства бактерий основное количество ДНК сконцентрировано в одном или нескольких местах. У бактерий ДНК упакована менее плотно, в отличие от истинных ядер; нуклеоид не обладает мембраной, ядрышком и набором хромосом. Бактериальная ДНК не связана с основными белками - гистонами - и в нуклеоиде расположена в виде пучка фибрилл.

На поверхности некоторых бактерий имеются придаточные структуры; наиболее широко распространенными из них являются жгутики - органы движения бактерий.

Жгутик закрепляется под цитоплазматической мембраной с помощью двух пар дисков. У бактерий может быть один, два или много жгутиков. Расположение их различно: на одном конце клетки, на двух, по всей поверхности. Жгутики бактерий имеют диаметр 0,01-0,03 мкм, длина их может во много раз превосходить длину клетки. Бактериальные жгутики состоят из белка - флагеллина - и представляют собой скрученные винтообразные нити.

1.3 Морфология кишечной палочки и ее представителей

кишечный палочка микрофлора

Кишечная палочка - это полиморфная факультативная анаэробная короткая (длина 1-3 мкм, ширина 0,5-0,8 мкм) грамотрицательная палочка с закругленным концом. Штаммы в мазках располагаются беспорядочно, не образуя спор и перитрих. Некоторые штаммы имеют микрокапсулу и пили, широко встречается в нижней части кишечника теплокровных организмов. Большинство штаммов E. coli являются безвредными, однако серотип O157:H7 может вызывать тяжёлые пищевые отравления у людей.

Бактерии группы кишечных палочек хорошо растут на простых питательных средах: мясопептонном бульоне (МПБ), мясопептонном агаре (МПА). На среде Эндо образуют плоские красные колонии средней величины. Красные колонии могут быть с темным металлическим блеском (Е. coli) или без блеска (E.aerogenes).

Обладают высокой ферментативной активностью в отношении лактозы, глюкозы и других сахаров, а также спиртов. Не обладают оксидазной активностью. По способности расщеплять лактозу при температуре 37°С бактерии делят на лактозоотрицателъные и лактозоположительные кишечные палочки (ЛКП), или колиформные, которые формируются по международным стандартам. Из группы ЛКП выделяются фекальные кишечные палочки (ФКП), способные ферментировать лактозу при температуре 44,5°С..coli не всегда обитают только в желудочно-кишечном тракте, способность некоторое время выживать в окружающей среде делает их важным индикатором для исследования образцов на наличие фекальных загрязнений.

Общие колиформные бактерии (ОКБ) - грамотрицательные, не образующие спор палочки, способные расти на дифференциальных лактозных средах, ферментирующие лактозу до кислоты, альдегида и газа при температуре 37 +/- 1°C в течение 24 - 48 ч.

Колиформные бактерии (колиформы) - группа грамотрицательных палочек, в основном живущих и размножающихся в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных (например, домашнего скота и водоплавающих птиц). Вводу попадают, как правило, с фекальными стоками и способны выживать в ней в течение нескольких недель, хотя при этом (в подавляющем большинстве) не размножаются.

Термотолерантные колиформные бактерии играют важную роль при оценке эффективности очистки воды от фекальных бактерий. Более точным индикатором служит именно E. coli (кишечная палочка), так как источником некоторых других термотолерантных колиформ могут служить не только фекальные воды. В тоже время общая концентрация термотолерантных колиформ в большинстве случаев прямо пропорциональна концентрации E. coli, а их вторичный рост в распределительной сети маловероятен (за исключением случаев наличия в воде достаточного количества питательных веществ, при температуре выше 13 °C.

Термотолерантные колиформные бактерии (ТКБ) - входят в число общих колиформных бактерий, обладают всеми их признаками и, кроме того, способны ферментировать лактозу до кислоты, альдегида и газа при температуре 44 +/ - 0,5 °C в течение 24 ч.

Включают род эшерихия и в меньшей степени отдельные штаммы цитробактер, энтеробактер и клебсиеллу. Из этих организмов только Е. соli специфично фекального происхождения, причем она всегда присутствует в больших количествах в экскрементах человека и животных и редко обнаруживается в воде и почве, не подвергшихся фекальному загрязнению. Считается, что обнаружение и идентификация Е. соli дает достаточную информацию для установления фекальной природы загрязнения.

Колиформы в большом количестве содержатся в бытовых сточных водах, а также в поверхностном стоке с территорий скотоводческих ферм. В водоисточниках, используемых для централизованного питьевого и хозяйственно-бытового водоснабжения, допускается численность общих колиформ не более 1000 единиц (КОЕ/100 мл, КОЕ - колониеобразующие единицы), а термотолерантных колиформ - не более 100 единиц. В питьевой воде колиформыне должны обнаруживаться в пробе объемом 100 мл. Допускается случайное попадание колиформных организмов в распределительную систему, но не более чем в 5% проб, отобранных в течение любого 12-месячного периода при условии отсутствия E. coli.

Присутствие колиформных организмов в воде свидетельствует о ее недостаточной очистке, вторичном загрязнении или о наличии в воде избыточного количества питательных веществ.

2. Материалы и методы исследования

При исследовании относительно чистой в микробном отношении воды на наличие патогенных микроорганизмов необходимо концентрировать искомую микрофлору, содержащуюся в ничтожно малом количестве в воде. Обнаружение возбудителей кишечных инфекций в воде открытых водоемов и сточных водах на фоне преобладающей массы сапрофитной микрофлоры наиболее эффективно при концентрировании искомых бактерий в средах накопления, которые угнетают рост сопутствующей микрофлоры. Следовательно, при проведении анализа воды, имеющей различную степень общего микробного загрязнения, используют определенные методы выделения патогенной микрофлоры.

Открытые ведаемы обычно характеризуется значительным содержанием взвешенных веществ, т.е. мутностью, часто цветностью, малым содержанием солей, относительно малой жесткостью, наличием большого количества органических веществ, относительно высокой окисляемостью и значительным содержанием бактерий. Сезонные колебания качества речной воды нередко бывают весьма резкими. В период паводков сильно возрастает мутность и бактериальная загрязненность воды, но обычно снижается ее жесткость (щелочность и солесодержание). Сезонные изменения качества воды в значительной степени влияют на характер работы очистных сооружений водопровода в отдельные периоды года.

Количество микробов в 1 мл воды зависит от наличия в ней питательных веществ. Чем вода загрязненнее органическими остатками, тем больше в ней микробов.Особенно богаты микробами открытые водоемы и реки. Наибольшее количество микробов в них находится в поверхностных слоях (в слое 10 см от поверхности воды) прибрежных зон. С удалением от берега и увеличением глубины количество микробов уменьшается.

Речной ил богаче микробами, чем речная вода. В самом поверхностном слое ила бактерий так много, что образуется из них как бы пленка. В этой пленке содержится много нитчатых серобактерий, железобактерий, они окисляют сероводород до серной кислоты и этим препятствуют угнетающему действию сероводорода (предотвращается замор рыб).

Реки в районах городов часто являются естественными приемниками стоков хозяйственных и фекальных нечистот, поэтому в черте населенных пунктов резко увеличивается количество микробов. Но по мере удаления реки от города число микробов постепенно уменьшается, и через 3-4 десятка километров снова приближается к исходной величине. Это самоочищение воды зависит от ряда факторов: механическое осаждение микробных тел; уменьшение в воде питательных веществ, усвояемых микробами; действие прямых лучей солнца; пожирание бактерий простейшими и др.

Патогенны могут попадать в реки и водоемы со сточными водами. Бруцеллезная палочка, палочка туляремии, вирус полиомиелита, вирус ящура, а также возбудители кишечных инфекций - палочка брюшного тифа, палочка паратифа, дизентерийная палочка, холерный вибрион - могут сохраняться в воде длительное время, и вода может стать источником инфекционных заболеваний. Особенно опасно попадание болезнетворных микробов в водопроводную сеть, что случается при ее неисправности. Поэтому за состоянием водоемов и подаваемой из них водопроводной воды установлен санитарный биологический контроль.

2.1 Гидрометрический поплавковый метод измерения и определения скорости течения воды

Для измерения и определения скорости течения воды существует - поплавковый метод, который основан на отслеживании движения предмета, опущенного в поток (поплавка) с помощью приборов или невооруженным глазом. Поплавки сбрасываются в воду на малых реках с берега или с лодки. По секундомеру определяется время и прохождение поплавка между двумя соседними створами, расстояние между которыми известно. Поверхностная скорость течения приравнивается скорости движения поплавка. Поделив пройденное поплавком расстояние на время наблюдения, получают скорость потока.

2.2 Отбор воды, хранение и транспортировка проб

Пробы воды для бактериологического анализа отбирают с соблюдением правил стерильности: в стерильные бутылки или стерильными приборами - батометрами в количестве 1 л.

Для отбора воды из открытых водоемов, сточных вод, воды из бассейнов, колодцев удобен так называемый бутылочный батометр.

Методические указания по обнаружению возбудителей кишечных инфекций бактериальной природы в воде.

При отборе проб воды из открытых водоемов следует предусмотреть следующие точки: в месте застоя и в месте наиболее быстрого течения (с поверхности и на глубине 50 - 100 см).

Бутылочный батометр. Батометры - приборы различной конструкции для взятия проб воды с разных глубин. В классическом виде это цилиндры, которые можно опустить на определенную глубину, там закрыть и извлечь. Самостоятельно изготовить классический батометр непросто. Но вместо него можно использовать простую стеклянную или пластиковую бутылку с узким горлышком, утяжеленную каким-либо грузом и заткнутую пробкой, идеально - корковой. К горлышку бутылки и к пробке привязываются веревки. Опустив бутылку на нужную глубину (главное, чтобы она тонула, для этого и нужен груз), необходимо выдернуть пробку - поэтому затыкать ее туго не следует. Дав бутылке время наполниться на нужной глубине (1-2 мин), ее вытаскивают на поверхность. Делать это следует как можно более энергично - при большой скорости подъема и узком горлышке вода из вышележащих слоев практически не попадет внутрь.
Пробы, поднятые на поверхность с помощью батометра, также следует «сгущать», используя планктонную сеть, а затем рассчитывать объем процеженной воды. Поскольку этот объем должен быть, по возможности, большим, батометр следует делать как можно большего размера, например использовать 2-литровую стеклянную или пластиковую бутылку или какой-либо еще сосуд большого размера с узким горлом. На веревке, к которой привязана бутылка, также следует сделать отметки через каждый метр - для определения глубины отбора проб.

Первая контрольная точка у дамбы (начало пляжа) - точка забора (ТЗ1).

Вторая контрольная точка у лодочной станции (конец пляжа) - точка забора (ТЗ2).

Т31-первая контрольная точка у дамбы (начало пляжа) Т32-вторая контрольная точка у лодочной станции (конец пляжа)

2.3 Хранение и транспортирование проб

К исследованию проб в лаборатории необходимо приступить как можно быстрее с момента отбора.

Анализ следует провести в течение 2-х часов после забора.

Если не может быть соблюдено время доставки пробы и температура хранения, анализ пробы проводить не следует.

2.4 Подготовка посуды к анализу

Лабораторная посуда должна быть тщательно вымыта, ополоснута дистиллированной водой до полного удаления моющих средств и других посторонних примесей и высушена.

Пробирки, колбы, бутылки, флаконы должны быть заткнуты силиконовыми или ватно-марлевыми пробками и упакованы так, чтобы исключить загрязнение после стерилизации в процессе работы и хранения. Колпачки могут быть металлические, силиконовые, из фольги или плотной бумаги.

Новые резиновые пробки кипятят в 2%-м растворе натрия двууглекислого 30 минут и 5 раз промывают водопроводной водой (кипячение и промывание повторяют дважды). Затем пробки 30 минут кипятят в дистиллированной воде, высушивают, заворачивают в бумагу или фольгу и стерилизуют в паровом стерилизаторе. Резиновые пробки, использованные ранее, обеззараживают, кипятят 30 минут в водопроводной воде с нейтральным моющим средством, промывают в водопроводной воде, высушивают, монтируют и стерилизуют.

Пипетки со вставленными тампонами из ваты должны быть уложены в металлические пеналы или завернуты в бумагу.

Чашки Петри в закрытом состоянии должны быть уложены в металлические пеналы или завернуты в бумагу.

Подготовленную посуду стерилизуют в сухожаровом шкафу при 160-170°С 1 час, считая с момента достижения указанной температуры. Простерилизованную посуду можно вынимать из сушильного шкафа только после его охлаждения ниже 60 °С.

После выполнения анализа все использованные чашки и пробирки обеззараживают в автоклаве при (126±2)°С 60 минут. Пипетки обеззараживают кипячением в 2%-м растворе NaHC03.

После охлаждения удаляют остатки сред, затем чашки и пробирки замачивают, кипятят в водопроводной воде и моют с последующим ополаскиванием дистиллированной водой.

В чашки Петри заливают заранее приготовленный питательный агар ЭНДО и ставят для застывания.

2.5 Метод мембранных фильтров

Mетод определения количества клеток E.coli в единице объема жидкости (коли-индекс); суть метода заключается в фильтровании анализируемой жидкости через мембранные фильтры, задерживающие бактерии, после чего эти фильтры помещают на твердую питательную среду и подсчитывают выросшие на ней колонии бактерий.

Подготовка мембранных фильтров

Мембранные фильтры должны быть подготовлены к анализу в соответствии с указаниями завода - изготовителя.

Подготовка фильтровального аппарата

Фильтровальный аппарат обтирают ватным тампоном, смоченным спиртом, и фламбируют. После охлаждения на нижнюю часть фильтровального аппарата (столик) кладут фламбированным пинцетом стерильный мембранный фильтр, прижимают его верхней частью прибора (стаканом, воронкой) и закрепляют устройством, предусмотренным конструкцией прибора.

При методе мембранных фильтров определенное количество воды пропускается через специальную мембрану с размером пор порядка 0.45 мкм.

В результате, на поверхности мембраны остаются все находящиеся в воде бактерии. После чего мембрану с бактериями помещают на специальную питательную среду (ЭНДО). После чего чашки Петри переворачивали и помещали в термостат на определенное время и температуру. Общие колиформные бактерии (ОКБ) - инкубировали при температуре 37 +/- 1°C в течение 24-48 ч. Для определения термотолерантных бактерий посев производят в среду, предварительно прогретую до температуры 44°С, и инкубируют при этой же температуре в течение 24 часов.

Среда светочувствительна. Поэтому все засеянные чашки предохраняют от света.

Во время этого периода, называемого инкубационным, бактерии получают возможность размножиться и образовать хорошо различимые колонии, которые уже легко поддаются подсчету.

По окончании сроков инкубации производят просмотр посевов:

а) отсутствие микробного роста на фильтрах или обнаружение на них колоний, не характерных для бактерий кишечной группы (губчатые, пленчатые с неровной поверхностью и краем), позволяет на этом этапе анализа закончить исследования (18-24 ч) с выдачей отрицательного результата на присутствие кишечных палочек в анализируемом объеме воды;

б) при обнаружении на фильтре колоний, характерных для кишечных палочек (темно-красных с металлическим блеском или без него, розовых и прозрачных), исследование продолжают и микроскопируют.

Если рост круглых колоний малинового цвета с металлическим блеском диаметром 2,0-3,0 мм - Escherichia coli 3912/41 (055:K59);

Если рост круглых колоний малинового цвета диаметром 1,5-2,5 мм с нечетким металлическим блеском - Escherichia coli 168/59 (O111:K58)

2.6 Учет результатов

После инкубационного периода 48 часов для общих колиформных бактерий и 24 часа для термоталерантных бактерий производят подсчет выросших на чашках колоний.

Колонии, выросшие на поверхности, а также в глубине агара, подсчитывали с помощью лупы с пятикратным увеличением или специальным прибором с лупой. Для этого чашку кладут вверх дном на черный фон и каждую колонию отмечают со стороны дна тушью или чернилами для стекла.

Для подтверждения наличия ОКБ исследуют:

все колонии, если на фильтрах выросло менее 5 колоний;

не менее 3 - 4 колоний каждого типа.

Для подтверждения наличия ТКБ исследуют все типичные колонии, но не более 10.

Подсчитывают число колоний каждого типа.

Вычисление и представление результатов.

Результат анализа выражают числом колоний образующих единиц (КОЕ) общих колиформных бактерий в 100 мл воды. Для подсчета результата суммируют число колоний, подтвержденных как общие колиформные бактерии, выросших на всех фильтрах, и делят на 3.

Так как такой метод анализа воды предполагает только определение общего числа колонии - образующих бактерий разных типов, то по его результатам нельзя однозначно судить о присутствии в воде патогенных микробов. Однако, высокое микробное число свидетельствует об общей бактериологической загрязненности воды и о высокой вероятности наличия патогенных организмов.

Каждую выбранную изолированную колонию исследуют на принадлежность к Граму.

Окраска по Граму

Окраска по Граму имеет большое значение в систематике бактерий, а также для микробиологической диагностики инфекционных заболеваний. Особенностью окраски по Граму является неодинаковое отношение различных микроорганизмов к красителям трифенилметановой группы: генциановому, метиловому или кристаллическому фиолетовому. Микроорганизмы, входящие в группу грамположительных Грам (+), например стафилококки, стрептококки, дают прочное соединение с указанными красителями и йодом. Окрашенные микроорганизмы не обесцвечиваются при воздействии на них спиртом, вследствие чего при дополнительной окраске фуксином Грам (+) микроорганизмы не изменяют первоначально принятый фиолетовый цвет. Грамотрицательные Грам (−) микроорганизмы (бактероиды, фузобактерии и др.) образуют с генциановым кристаллическим или метиленовым фиолетовым и йодом легко разрушающееся под действием спирта соединение, в результате чего они обесцвечиваются и затем окрашиваются фуксином, приобретая красный цвет.

Реактивы: карболовый раствор генцианвиолета или кристалвиолета, водный раствор Люголя, 96% этиловый спирт, водно-спиртовой раствор фуксина.

Методика окраски. На фиксированный мазок накладывают кусочек фильтровальной бумаги и на нее наливают карболовый раствор генцианвиолета от 1/2 до 1 минуты. Сливают краситель и, не смывая, наливают раствор Люголя на 1 минуту. Сливают раствор Люголя и прополаскивают препарат в 96% спирте в течение от 1/2 до 1 минуты, пока не перестанет отходить краситель. Промывают водой. Дополнительно окрашивают разведенным фуксином от 1/2 до 1 минуты. Сливают краситель, промывают и высушивают препарат.

3. Результаты исследования

.1 Микробиологический анализ воды Печерского озера (на примере E . coli ) в весенний период (май) исследования 2009-2013 гг.

В результате трехкратного забора воды в двух точках отбора проб (ТЗ1 - в начале пляжа, у дамбы, ТЗ2 - конец пляжа, лодочная станция) нами были высчитаны средние показатели ОКБ и ТКБ, результаты которых представлены в таблице 3.1.

Таблица 3.1. Средние показатели ОКБ и ТКБ в воде Печерского озера за май 2013 г.

Показатель содержания бактерий E.coli по ОКБ в начале и в конце мая в ТЗ1 (у дамбы) не различаются, составив 195 КОЕ/см 3 , что в 3,3 раза меньше по сравнению с пробой воды, отобранной в ТЗ2 (у лодочной станции) в начале мая и в 4,3 раза больше в конце мая.

Изучение динамики содержания кишечной палочки в воде Печерского озера за май 2013 года по данным СЭС подтвердил правильность проведения собственных исследований и показала, что показатель ОКБ в ТЗ2 в 3,4 раза выше чем в ТЗ1 (по собственным результатам в 3,3 раза больше).

Изучение изменения показателей ОКБ и ТКБ за месяц май с 2009 по 2013 гг. показало широкое варьирование показателей, что наглядно представлено на рисунках 3.1 - 3.2

Анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за начало мая 2008-2013 гг.


По окончанию анализа данных за начало мая 2008-2013 гг., мы установили что в 2008,2012 годах в ТЗ1 ОКБ оказалось больше чем в ТЗ2.

Анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за конец мая 2008-2013 гг.

Общие колиформные бактерии согласно СанПиНу должны отсутствовать в 100 мл питьевой воды

Термотолерантные фекальные колиформы согласно СанПиНу должны отсутствовать в 100 мл исследуемой питьевой воды.

Для открытых водоемов по ОКБ не более 500 КОЕ на 100 мл воды, по ТКБ не более 100 КОЕ на 100 мл воды.

Наличие в воде кишечных палочек подтверждает фекальную природу загрязнения.


По результатам измерений в летнюю межень колиформные бактерии присутствуют в небольших количествах, обычно от ста до нескольких сот единиц, и лишь в периоды паводков кратковременно повышаются до 1000 и более единиц.

Низкие значения летом могут быть связаны с несколькими факторами:

) интенсивной солнечной радиацией, которая губительна для бактерий;

) повышенными значениями рН в летний период (летом обычно рН > 8, зимой < 8) за счет развития фитопланктона;

) выделением в воду метаболитов фитопланктона, ингибирующих бактериальную флору.

С началом осенне-зимнего сезона перечисленные факторы существенно ослабляются, и численность бактерий повышается до уровня нескольких тысяч единиц. Наибольшие экстремумы попадают на периоды таяния снега, особенно в половодье, когда талые воды смывают бактерии с поверхности водосбора.

Общее число колонии образующих бактерий в середине лета как привело ниже, чем в весенне-осенний период, что связано с интенсивной солнечной радиацией, которая губительна для бактерий.

Реки в районах городов часто являются естественными приемниками стоков хозяйственных и фекальных нечистот, поэтому в черте населенных пунктов резко увеличивается количество микробов. Но по мере удаления реки от города число микробов постепенно уменьшается, и через 3-4 десятка километров снова приближается к исходной величине.

Наибольшее количество микробов в открытых водоемах находится в поверхностных слоях (в слое 10 см от поверхности воды) прибрежных зон. С удалением от берега и увеличением глубины количество микробов уменьшается.

Речной ил богаче микробами, чем речная вода. В самом поверхностном слое ила бактерий так много, что образуется из них как бы пленка. В этой пленке содержится много нитчатых серобактерий, железобактерий, они окисляют сероводород до серной кислоты и этим препятствуют угнетающему действию сероводорода (предотвращается замор рыб).

Заключение

кишечный палочка возбудитель бактерия

Для нахождения и идентификации кишечной палочки был произведен микробиологический анализ проб за начало мая 2013 г. Также осуществлен статистический анализ данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за начало мая 2008-2012 гг.

По окончанию анализа было установлено, что рассчитанное нами число бактерий группы кишечных палочек не превышает допустимой нормы.

По окончанию статистического анализа данных учреждения здравоохранения «Могилевского зонального центра гигиены и эпидемиологии» за 2008-2012 гг., было установлено, что в летнюю межень колиформные бактерии присутствуют в небольших количествах. Общее число колонии образующих бактерий в середине лета как привело ниже, чем в весенне-осенний период, так как интенсивной солнечной радиацией, которая губительна для бактерий, а с началом осенне-зимнего сезона численность бактерий повышается до уровня нескольких тысяч единиц. Наибольшие экстремумы попадают на периоды таяния снега, особенно в половодье, когда талые воды смывают бактерии с поверхности водосбора.

Список литературы

1. Фомин Г.С. Вода. Контроль химической, бактериальной и радиационной безопасности по международным стандартам. Энциклопедический справочник. М.: Изд-во «Протектор», 1995.

Долгоносов Б.М., Дятлов Д.В., Сураева Н.О., Богданович О.В., Громов Д.В., Корчагин К.А. Информационно-моделирующая система Aqua CAD - инструмент по управлению технологическими режимами на водопроводной станции // Водоснабжение и санитарная техника. 2003. №6. С. 26-31.

Долгоносов Б.М., Храменков С.В., Власов Д.Ю., Дятлов Д.В., Сураева Н.О., Григорьева С.В., Корчагин К.А. Прогноз показателей качества воды на входе водопроводной станции // Водоснабжение и санитарная техника 2004. №11. С. 15-20.

Кочемасова З.Н., Ефремова С.А., Рыбакова А.М. Санитарная микробиология и вирусология. М.: Медицина, 1987.

СанПиН 2.1.5.980-00. Водоотведение населенных мест, санитарная охрана водных объектов. Гигиенические требования к охране поверхностных вод.

СанПиН 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.

МУК 4.2.1018-01. Методы контроля. Биологические и микробиологические факторы. Санитарно-микробиологический анализ питьевой воды.

Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества.» применяются в отношении воды, подаваемой системами водоснабжения и предназначенной для потребления населением в питьевых и бытовых целях, для использования в процессах переработки продовольственного сырья и производства пищевых продуктов, их хранения и торговли, а также для производства продукции, требующей применения воды питьевого качества.
Колиформные бактерии

Для того, чтобы пить чистую воду, ее нужно, прежде всего, оценить на пример содержания разного рода включений. Даже вода из крана, может быть заражена бактериями. И причина тому, плохое состояние системы водоснабжения. Очень часто в воде, особенно неочищенной сегодня можно встретить всякого рода бактерии. А для того, чтобы вода стала питьевой, колиморфные бактерии в воде следует уничтожать.
Выявить бактерии в воде не так просто. Их не увидеть или не почувствовать на вкус. Любое присутствие колиформных бактерий в воде или каких других, может вызвать массовые эпидемии. Потому и поставлен запрет на их присутствие. Это может привести к летальному исходу многих людей. Брюшной тиф, дизентерия, как раз те болезни, которые проявляют себя при употреблении зараженной кишечной палочкой воды. Чтобы избежать массового заражения, нужно постоянно следить за составом воды.

Колиформные организмы уже давно считаются удобными микробными индикаторами качества питьевой воды, главным образом потому, что легко поддаются обнаружению и количественному определению.

Общие колиформные бактерии

Термотолерантные фекальные колиформы

Термотолерантные фекальные колиформы согласно СанПиНу должны отсутствовать в 100 мл исследуемой питьевой воды.

Термотолерантные фекальные колиформы представляют собой микроорганизмы, способные ферментировать лактозу при 44 °С или 44,5 °С.
Вторичный рост фекальных колиформ в распределительной сети маловероятен, за исключением тех случаев, когда присутствует достаточное количество питательных веществ (БПК больше 14 мг/л), температура воды выше 13 °С, а свободный остаточный хлор отсутствует. Этот тест отсекает сапрофитную микрофлору.

Колиформы могут свидетельствовать о попадании в воду патогенных микроорганизмов. Кишечные патогенные болезни широко распространены во всем мире. Среди возбудителей, встречающихся в загрязненной питьевой воде, обнаруживают штаммы сальмонелл, шигелл, энтеропатогенной кишечной палочки, холерного вибриона, иерсинии, энтероколитики, кампилобактериоза. Эти организмы вызывают заболевания, варьирующие от легкой формы гастрита до тяжелых, а иногда и летальных форм дизентерии, холеры, брюшного тифа.

Другие организмы, естественно присутствующие в окружающей среде и не считающиеся патогенными агентами, могут иногда вызывать оппортунистические заболевания (т. е. заболевания, вызванные условно-патогенными микроорганизмами – клебсиелами, псевдомонадами и др.). Такие инфекции чаще всего возникают у лиц с нарушениями иммунной системы (местного или общего иммунитета). При этом питьевая вода, используемая ими, может вызвать самые различные инфекции, в том числе поражения кожи, слизистых глаз, уха, носоглотки.
Не подвергайте себя и своих близких опасности, употребляйте только проверенную воду!

Для того, чтобы пить чистую воду, ее нужно, прежде всего, оценить на пример содержания разного рода включений. Даже вода из крана, может бать заражена . И причина тому, плохое состояние системы водоснабжения. Очень часто в воде, особенно неочищенной сегодня можно встретить всякого рода бактерии. А для того, чтобы вода стала питьевой, колиморфные бактерии в воде следует уничтожать.

Так ли уж нужно проверять воду?

Выявить бактерии в воде не так просто. Все таки есть четко урегулированный на законодательном и нормативном уровне состав воды и присутствие в ней каких-то не совсем полезных бактерий можно не увидеть или не почувствовать на вкус. Потому всем, кто строит дом, или просто хочет купить себе , советуют проводить анализ воды с целью определить ее состав. И наличие колиформных бактерий в воде будет обязательным элементом бактериологического анализа. Ниже представлена сводная таблица нормативов для питьевой воды центрального водоснабжения. Это те нормы, на которые следует ориентироваться при оценке.

Как наглядно видно из таблицы, бактерий, практически не должно быть в воде. Любое присутствие колиформных бактерий в воде или каких других, может вызвать массовые эпидемии. Потому и поставлен запрет на их присутствие. Это может привести к летальному исходу многих людей.

Весь перечень вредных бактерий довольно обширен. Выявить все вредные бактерии в воде сложно, потому и придумали более - химико-бактериологический, который и помогает выявить вредные палочные бактерии, в том числе. Эти вредоносные примеси можно выявить только в лаборатории. На вкус, цвет и вид выявить их невозможно.

Появляются такие бактерии в любом теплокровном существе. В том числе в кишечнике животных или человека. Откуда же они берутся в воде? Все просто, если в воду попадают фекалии, то развитие таких вредоносных бактерий очень возможно.

Фекалии же могут проникать в воду из сточных канав, выгребных ям, фильтровых траншей. Проявиться они могут даже в , из-за смещения слоев грунта. Человек же эксплуатирующий колодец, может этого и не заметить. Потому и рекомендуют через время делать анализ воды в колодце, если нет качественной очистной системы на участке.

По санитарным нормам колиформных бактерий в воде не должно быть совсем. Потому на станциях водоснабжения всегда есть этап обеззараживания, который как раз и занимается устранением вредных бактериологических примесей.

Наиболее популярными вариантами устранения бактерий из воды являются обеззараживающие установки. Можно конечно и вручную дозировать дезинфицирующие вещества. Но это чревато плохими последствиями. Из-за этого на производствах давно убрали ручной труд в работе обеззараживающих установок.

Для устранения бактериологической угрозы на предприятиях используют дозирование химических веществ. Если вода будет использоваться для питья, то в этом случае применяют ультрафиолетовые дезинфекторы, которые работают без вредных веществ.

О бактериях научным языком и более подробно

Колиформные бактерии называются еще очень вредными. Это группа одна из самых вредных групп бактерий. Из семейства энтеробактерий, группу палочки культуральным признакам. Группа таких бактерий является санитарным показателем фекальных вод.

По порядку ниже будут исследованы следующие особенности поведения бактерий кишечной палочки:

  • Поведение бактерий в плотной питательной среде;
  • Биохимические особенности
  • Устойчивость
  • Санитарные значения

Хотя данный вид информации довольно специфичен, но он помогает наглядно проследить все особенности работы бактерий в воде. На сколько они устойчивы, что вызывают своей работой в воде и т.д.

Итак, питательная среда. Бактерии прекрасно себя чувствуют в мясном бульоне или агаре. Осадок при этом имеет небольшие размеры, а вот рост бактерий резко идет вверх и появляется сильное помутнение воды.

Бактерии в бульене образуют окаемку, пленки при этом на поверхности нет. По цвету, большое скопление бактерий может иметь серо-голубой оттенок, иногда колонии могут быть красными с металлическим отливом. Колонии бактерий с отрицательной лактозой чаще всего бесцветны. В общем, же классифицировать по цветам и поведению бактерии группы палочки довольно сложно.

Теперь, что касается биохимических свойств. Бактерии такого рода помогают свертываться молоку, не разводят желатин. Оксидазной активности у них нет.

Расщеплять лактозу могут как раз бактерии кишечной палочки (с положительной лактозой).

Что касается устойчивости бактерий к разного рода химическим сильным дезинфекторам. Обезвредить кишечную палочку довольно просто. Для этого достаточно стандартной пастеризации при температуре 65, от силы 75 градусов. При температуре в 60 градусов по Цельсию, кишечная палочка убивается в течение 15 минут. Однопроцентный раствор фенола убирает палочку за период от 5 до 15 минут. Если разводить сулему в пропорциях один к тысячи, то тогда палочка будет убрана за 2 минуты. То есть убрать такие бактерии – не проблема.

Санитарные показатели бактерий кишечной палочки имеют разные значения. Если бактерии такого рода обнаруживаются на фруктах овощах в воде или почве, это означает только одно - свежее фекальное загрязнение имеет место.

Что характерно, в желудке человека, если он долгое время применяет антибиотики, тоже образуются бактерии кишечной палочки. Лактозоотрицательные бактерии в состоянии сбродить лактозы, именно они и образуются в большом количестве в кишечнике. Так образуются брюшной тиф, дизентерия, как раз те болезни, которые проявляют себя при употреблении зараженной кишечной палочкой воды.

Из всего вышесказанного, можно сделать вывод. Колиформные бактерии в воде должны полностью отсутствовать. Наличие их в воде угрожает эпидемиями и массовыми смертями. Чтобы избежать массового заражения, нужно постоянно следить за составом воды. Изменение потоков подземных вод, может привести к образованию грязных потоков.

Устранить колиформные бактерии из воды можно всего двумя способами. Использовать либо дезинфекцию, либо обеззараживание. Разница в понятиях состоит в воздействии. Оно может быть химическим, а может быть физическим. Для может использоваться химическое воздействие с помощью хлорсодержащих элементов. Но в этом случае обязательно должна проходить доочистка. Чтобы устранить из воды излишек хлора, который так же негативно влияет на здоровье человека.

Остальные варианты производства питьевой воды используют ультрафиолетовые излучатели, которые убивают группу бактерий кишечной палочки с помощью . Не облучая при этом воду вредными лучами и не оставляя после себя следов.

Еще один вариант дезинфекции использование озона – концентрированного жидкого кислорода. Он быстро испаряется с поверхности воды, отлично чистит ее и не имеет остаточных явлений в воде. Полностью экологически безопасен. Но труден в производстве и дорог.

Кто такие БГКП и где они живут

ГОСТ для колиформных бактерий

Разработан межгосударственный стандарт по методам выявления и определения количества колиформных микробов. Этот ГОСТ обеспечивает безопасность пищевых продуктов. Любая продукция, входящая в список ГОСТа, должна пройти лабораторные исследования. После лабораторных анализов, доказывающих допустимые значения БГКП, продукция уходит на реализацию. Обязательному исследованию подлежат:

  • Вода.
  • Консервы.
  • Мясная продукция.
  • Корма для животных.
  • Посуда и оборудование.

Важно знать, что ГОСТ не распространяется на молоко и молочные продукты. Все молоко и другая молочная продукция, купленная на разлив или на развес, должна подвергаться пастеризации с целью уничтожения колиформных микроорганизмов. Пастеризация – нагрев до +80⁰С в течение 30 минут.

ГОСТ обязывает следить и за санитарно-бактериологическим состоянием воды. Забор воды на определение наличия БГКП производят из:

  • Городской системы водоснабжения.
  • Открытых водных резервуаров (рек, морей, водоемов).
  • Источников питьевой воды (колодцы, ключи).
  • Плавательных бассейнов.
  • Сточных вод (до и после очистки).

Мойте руки!

Все виды бактерии группы кишечных палочек погибают при кипячении или пастеризации. В молоке, мясе и воде не останется токсинов вида эшерихии и сальмонеллы при температуре выше + 60⁰С. Ручки двери или поверхность стола нужно протереть дезинфицирующим раствором. Колиформные бактерии мгновенно погибают от спирта или другого антибактериального агента. Но самым надежным способом профилактики кишечных заболеваний по ГОСТу и по жизненному опыту является мытье рук с мылом. Щелочная среда мыла разрушает стенки микробов. Если нет возможности вымыть руки, например, в дороге, воспользуйтесь дезинфицирующими влажными салфетками или гелем для рук.

Сегодня, когда здоровье стало не только необходимостью, но и модным брендом, мы все больше внимания уделяем правильному питанию и физическим нагрузкам. Но очень часто забываем, что наше самочувствие во многом определяется водным балансом организма. И тут важно не только, сколько воды мы пьем, но и какую. В определении качества воды уже давно нашими помощниками стали колиформные бактерии. Этот живой индикатор качества питьевой воды легок в обнаружении и подсчете и применяется в микробиологическом анализе. Бактерий в питьевой воде быть не должно - это факт. А вот о колиформных бактериях в питьевой воде мы знаем мало.

Армия их неисчислима

По форме клетки бактерии бывают как шарики (кокки) и палочки (бациллы), спиральки (спириллы) и изогнутые (вибрионы). Автотрофные бактерии сами синтезируют органические вещества из неорганических (фотосинтетики и хемосинтетики). Но их меньшинство. Большая часть бактерий - гетеротрофы, среди которых выделяют сапротрофов (используют органические вещества продуктов жизнедеятельности и отмершие части живых организмов) и симбионты (используют органические вещества живых организмов или их продукты жизнедеятельности). Симбионты человека называются энтеробактериями, и интересующие нас колиформные бактерии именно такие.

Кто же это?

В условно выделенную по морфологии и культуре группу колиформных бактерий объединяют представителей родов Escherichia , Citrobacter, Enterobacter и Klebsiella, которые используются в санитарной микробиологии как маркеры попадания потенциально опасных микроорганизмов на объекты внешней среды. Простым языком - это бактерии группы кишечной палочки, то есть все, что похожи на кишечную палочку (Escherichia coli ). Это грамотрицательные (чисто микробиологическая характеристика по отношению организмов к способности окрашиваться или нет в мазках) палочки, которые живут в нижних отделах кишечника человека и многих теплокровных животных (домашние скот и птица). В воде они оказываются с фекальными стоками и могут служить маркерами ее загрязнения.

Биохимические характеристики

Все бактерии группы кишечной палочки обладают способностью к ферментации лактозы, но делают это при разных температурных показателях. Выделяют две группы бактерий:

  • Общие колиформные бактерии. Сбраживают углеводы в температурном интервале 35-37°C.
  • Фекальные или термотолерантные колиформные бактерии. Сбраживание углеводов происходит при 44,0-44,5°C.

Это разделение важно при проведении микробиологического анализа. В питьевой воде общих колиформных бактерий быть не должно. Допускается их попадание в распределительные системы подачи питьевой воды, но не более чем в 5% проб, взятых в течение 12 месяцев. Кроме того, при обнаружении общих колиформных бактерий в воде обязателен тест на присутствие термотолерантных видов.

Насколько они опасны

Среди всех представителей колиформных бактерий условно-патогенными считаются представители 15 видов различных родов. Среда их обитания - нижние отделы кишечного тракта человека и животных. Это не одно и то же, что патогенные бактерии. Такие организмы всегда присутствуют в микрофлоре пищеварительного тракта, многие их них помогают организму усваивать и синтезировать витамины, разлагать белки и углеводы. Патогенными (вызывающими заболевания) они могут стать при изменении условий среды, что приведет к их избыточному размножению. Такими причинами может стать снижение иммунитета, гибель нормальной микрофлоры после приема лекарств, угнетение защитных свойств слизистых оболочек и многое другое. Но не факт, что человек, выпивший воды, даже содержащей данные микроорганизмы, заболеет.

А нам это надо?

Выявить колиформные бактерии в питьевой воде не так просто - их не почувствуешь на вкус и не увидишь. Но тем, кто строит дом или хочет купить смягчитель воды, желательно проверить воду на их наличие. Далее в таблице даны нормативы для воды центрального водоснабжения, но стоит учесть, что даже в обычном кулере могут обнаружиться бактерии.

Кроме данных показателей, бактериологический анализ оперирует и другими стандартами. Но важно одно - бактерий в воде быть не должно. А их обнаружение чревато эпидемиями и массовым заражением патогенными формами. В России и странах Таможенного союза действуют нормы для содержания в пищевых продуктах и воде колиформных бактерий в соответствии с ТР ТС 021/2011 «О безопасности пищевых продуктов» и других нормативных актов.

Если вы решили сдать воду на анализ

Прежде всего, ознакомьтесь с правилами забора проб (стерильная емкость, личная гигиена перед отбором проб, которые действительны в течении двух часов). Это важно - а ведь это показатель чистоты анализа. В лаборатории проведут посевы на различные среды (агар или бульон), где вырастут разноцветные колонии бактерий (именно по их цвету и форме проходит определение колиформных бактерий) и подсчитают количество микроорганизмов в пробе. Но колиформы в образцах имеют различное санитарное и эпидемиологическое значение. Так, представители рода Escherichia показывают совсем недавнее заражение воды фекальными стоками. Присутствие Citrobacter или Enterobacter показывают загрязнения, произошедшие в течении нескольких недель.

Способы устранения бактерий из воды

Для устранения колиформных бактерий существует всего два способа: дезинфекция и обеззараживание. В первом случае воздействие на бактерии химическое, во втором - физическое, а именно:

  • термообработка;
  • воздействие сильных окислителей (хлор, гипохлорит натрия);
  • олигодинамия (воздействие ионов серебра и золота);
  • использование ультразвука, радиоактивного излучения, ультрафиолета.

Дезинфекция сточных вод проводится с помощью элементов, содержащих хлор. В таких случаях обязательно проведение доочистки для удаления излишков хлорсодержащих элементов, негативно влияющих на организм человека. Обеззараживание помощью ультрафиолетовых излучателей воздействует только на бактерии и не оставляет следов в воде. Для дезинфекции применяют и озон - концентрированный жидкий кислород. Этот способ дорогостоящий и трудный в производстве, но за ним будущее. Он полностью экологичен и не оставит следов в воде, которую мы пьем. Ранее популярный метод обеззараживания - йодирование - сегодня применяется лишь кратковременно и в областях, где содержание йода в окружающей среде ниже норм.

Профилактические мероприятия

Пути попадания в наш организм патогенных колиформных штаммов - фекальный и оральный. Для обеспечения личной безопасности важно соблюдать очень простые правила:

  • Не употреблять в пищу немытые овощи, зелень, фрукты, ягоды.
  • Тщательно следить за соблюдением личной гигиены.
  • Не применять воду, не прошедшую соответствующую очистку. В том числе и для полива сельскохозяйственных культур. Кстати, опытные садоводы и огородники даже дождевую воду не применяют для полива.
  • Прямыми путями заражения является употребление воды и молока, которые не прошли термическую обработку. При кипячении (100°C) в течение минуты большая часть бактерий погибает.
  • Осторожное купание в озерах и других водоемах со стоячей водой. Именно они относятся к группе риска по развитию условно-патогенной флоры. Исключение составляют только океаны - высокая солёность почти полностью обеззараживает их воду.

Кстати, популярные сегодня среди населения кулеры далеко не так безопасны. Чем большее количество людей ими пользуется, тем выше вероятность обнаружения в воде различных организмов - как безвредных, так и патогенных.

Подводя итог

Бактерий в нашей питьевой воде быть не должно. Никаких. И не только потому что они могут стать причиной серьёзных расстройств желудочно-кишечного тракта, вплоть до летального исхода. Не должно в ней быть и условно-патогенных колиформных бактерий, которые сегодня используются как маркеры загрязнения воды органикой, фекалиями и прочим. Именно поэтому государственными структурами ведется контроль и мониторинг за состоянием не только воды наших систем подачи, но и воды водоемов и подземных источников. А целью каждого, кто заботится о своем здоровье и здоровье своих близких должно стать соблюдение личных правил гигиены, техники безопасности при использовании воды для питья и мытья посуды. Берегите себя и будьте здоровы!

Чувства