Оптическое волокно и оптоволоконный интернет. Что это и как подключить? Как выбрать оптоволоконный кабель

Волоконно-оптический кабель активно используется для прокладки линий связи и считается наиболее современным и эффективным проводником информации на сегодняшний день. Всё время растущие запросы человечества в сфере коммуникаций подталкивают разработчиков изобретать новые и новые способы передачи информации на максимально возможных скоростях. И все новейшие решения в области интернета и телефонии не обходятся без использования оптического кабеля.

Волоконно-оптический кабель представляет собой конструкцию, основой которой являются тончайшие волокна из чистого кварцевого стекла, облаченные в специальные изолирующие материалы и внешнюю оболочку. На рынке телекоммуникационного оборудования и кабельно-проводниковой продукции оптические кабели связи представлены широчайшей линейкой моделей с различными техническими параметрами, структурой и функционалом. Но все эти модели объединяет принцип передачи сигнала: по сути, оптическое волокно является световой трубкой, в которой световая волна распространяется согласно законам оптики.

Для чего нужен оптический кабель и почему нельзя обойтись имеющимися медножильными проводниками? Дело в том, что за последнее десятилетие многократно возрос спор на высокоскоростной интернет и качественную мобильную связь. Зачастую медные кабели связи просто не в состоянии отвечать всё время растущим аппетитам абонентов. Возможности же волоконно-оптического кабеля безграничны. Малогабаритные оптические кабели способны заменить громоздкие медные аналоги при этом значительно улучшая качество и скорость передачи данных.

Оптоволоконные технологии применимы как в промышленности, так и в быту. Помимо возможности передачи информации на высоких скоростях при использовании современных оптических решений, волоконно-оптический кабель является диэлектриком, что делает его наиболее безопасным для применения на различных объектах промышленности.

Оптические кабели способны передавать информацию на длинные расстояния, при этом сохраняя максимально возможное качество передачи данных. Широкая линейка модификаций оптического кабеля позволяет подбирать модели идеально подходящие для построения конкретной кабельной трассы при сохранении параметров передачи.

Оптический кабель необходим в тех случаях, когда высок уровень электромагнитных помех, т.к. оптоволокно вовсе нечувствительно к внешним электромагнитным влияниям.
Также стоит отметить, что сам материал проводника, стекло, химически устойчиво к процессам коррозии, что увеличивает срок службы изделия.

Оптические технологии - это принципиально новый подход к передаче информации. Соответственно, пока что построение оптических линий связи обходится дороже работ с медножильными аналогами. Цена на оптический кабель всё же выше стоимости медных кабелей связи. И на сегодняшний день применение оптоволокна оправдано, скорее, на больших расстояниях.

На сайте компании «Вионет» представлен широчайший ассортимент оптического кабеля проверенных заводов-производителей по выгодным ценам. Мы предлагаем

Часто можно видеть различную рекламу о качественном интернете и телевидении. Такие свойства сигнал приобретает в результате перемещения к потребителю по линиям из оптических волокон, в которых практически не происходит потерь информации.

Что такое оптоволокно

В обыкновенном проводе электрический сигнал проходит по медному проводнику . В оптических линиях по ним проходят световые фотоны и волны . Оптиковолокно считается самым быстрым способом передачи информации на значительные расстояния. Кабель состоит из нескольких отдельных проводников разделенными между собой специальными покрытиями. В конструкции каждый отдельный элемент проводит информацию, зашифрованную в свет.

В качестве передаваемой информации могут использоваться телефонные и телевизионные данные , а также интернет (благодаря оптоволокну добиваются высокой скорости доступа в Интернет). В настоящее врем все три сигнала для передачи объединяются в один.

Особенности ограничения

За несколько последних лет ограничения по скорости передачи данных в оптических линиях продвинулись намного вперед. Скорость зависит от длины проводника, а также качества самой информации. В одномодовых системах используется скорость от 2,5 Мбит/с до 10 Гбит/с при расстоянии передачи от 10 км и выше. В настоящее время проводятся исследования, в результате которых скоро станет возможной скорость до 160 Гбит/с . Не стоит забывать, что многие кабели изготавливаются многослойными, что позволяет передавать намного больше информации с высокой скоростью.

Достоинства и недостатки

Оптические волокна в процессе эксплуатации потребителями, как и любое техническое изделие, имеет свои плюсы и минусы. К преимуществам данного вида проводника следует отнести:

  1. Защиту от помех . Любые виды электромагнитного воздействия беспомощны перед оптоволокном. Благодаря этому свойству они могут применяться вблизи мощных источников излучения.
  2. Не проводит электрический ток , в результате чего конструкционно облегчается изготовление блоков приема и передачи.
  3. Безопасность информации и совместимость электромагнитных импульсов. Благодаря восприимчивости к любому виду излучений оптико волоконный кабели в процессе эксплуатации не излучают электромагнитных волн в результате чего информация защищена от перехвата.
  4. Малые затухания . Благодаря применяемым материалам сигнал не теряет своих свойств на больших расстояниях тем самым намного превосходя свои медные аналоги.
  5. Повышенная пропускная способность и широкополосность . Такие способности позволили передавать в одном оптическом кабеле различные виды сигналов, при этом они перемешиваются и не создают помех друг другу.
  6. Имеют низкий вес , а в некоторых случаях и стоимость в отличие от электрических проводников.

К недостаткам следует отнести:

  • повышенные требования к персоналу в процессе эксплуатации и обслуживания;
  • малая прочность в результате чего возникают трещины и разрывы, сигнал начнет затухать, либо прерываться;
  • потеря связи при попадании воды внутрь проводника.

Применяемые материалы

В производстве оптоволокна применяются следующие материалы:

  • кварцевое стекло;
  • материалы на основе полимеров.

Кварцевое стекло

Производится при плавлении минерала кварца , который является ценной породой. В результате его применения оптические волокна приобретают следующие положительные свойства:


Полимерные материалы

Применение таких материалов позволяет использовать оптиковолокно большой толщины, благодаря пластичности и стабильности на изгиб и залом. Недостатком является недопустимость использования в зонах инфракрасного излучения в результате которого происходит затухание сигнала.

Устройство и принцип работы

Оптические кабели представляют собой проводник, состоящий из нескольких жил обернутый в оплетку-экран. Сами жилы изготавливаются из стекла или полимера и обладают повышенной гладкостью для обеспечения максимальной проводимости.

Веществом, которое переносит информацию является свет, он имеет самую большую скорость перемещения. Кабельные жилы - это, по сути, стеклянные трубки, обернутые в металлическую фольгу, которая служит экраном сохраняющим поток сигнала. Свет, проходя по кабелю отражается от стенок и доходит до приемника. Скорость передачи информации ниже скорости света, в результате того, что фотоны не летят прямолинейно.

Сигнал в результате своего движения все-таки терпит некоторые потери . Затухание во многом зависит от качества применяемых материалов и условий прокладки оптоволокна. Не малую роль при этом играет и сам передатчик.

Разновидности

В современном исполнении оптическое волокно разделяют на два основных вида, которые отличаются по размеру сердцевины:

  • одномодовые;
  • многомодовые.

Одномодовые

В таком исполнении сердечник имеет толщину до 8 мкм. Благодаря минимальным размерам по волокну способен проходить единственный луч практически без потерь . Данный вид применяется в линиях на значительном протяжении, где важно сохранить качество сигнала.

Многомодовые

Данный вид сердечника состоит из волокна толщиной до 62,5 мкм. По таким кабелям способны протекать множественные световые пучки, позволяя перемещаться им одновременно под разными углами к сердцевине. Сигнал в таких проводах испытывает значительные потери в результате многих отражений от оболочки.

Многомодовые оптиковолоконные линии в свою очередь делятся на два типа:

  1. Градиентные . В таких кабелях плотность сердечника меняется в некоторых местах на протяжении линии, что позволяет сигналу развивать высокую скорость за меньший период времени.
  2. Ступенчатые . В данном типе исполнения плотность волокон сердечника единая на протяжении всей линии.

Классификация

По способу непосредственного монтажа оптические кабели подразделяются на следующие виды:

  • прокладка в земле;
  • трубы для канализации, а также коллекторы;
  • подводный монтаж;
  • воздушные линии.

В зависимости от использования и дальности передаваемого сигнала оптиковолокно разделяют на следующие виды:

  • при создании длинных линий на значительные расстояния многоканальной сети применяются магистральные кабели , для обеспечения стабильности сигнала в конструкции используются волокна с сердцевиной до 125 мкм, при длине волны не ниже 1,55 мкм;
  • при прокладке многоканальных линий между областями и регионами применяются зоновые провода , в их конструкции используются градиентные волокна;
  • городское оптоволокно прокладывают по коллекторам и специальным каналам, по своим некоторым характеристикам схоже с зоновым, длина линии не превышает 10 км;
  • прокладка полевых кабелей подразумевает монтаж различными способами, как по воздуху, так и под землей, не подвержен горению, растягиванию, в конструкции используют до 12 волокон;
  • подводный кабель обладает высокой устойчивостью к растягиванию и разрыву, не пропускает влаги, имеет пониженный дисперсионный уровень;
  • объектовые кабели применяются для монтажа внутри конкретных обособленных участков и каналов, в них не используются гидрофобные материалы, что упрощает процесс прокладки;
  • монтажные провода изготавливаются в виде плоского пучка волокон, в них применяются градиентные многомодовые оптические волокна.

По варианту исполнения сердцевины оптического кабеля выделяют следующие виды:

  • повивная концентрическая скрутка вокруг одного сердечника;
  • центральный провод с числом волокон до 45;
  • фигурный сердечник с числом волокон до 576;
  • плоское исполнение до 288 волокон в нем.

Способы подключения

При прокладке оптиковолоконного кабеля зачастую приходится использовать разнообразные коммутирующие устройства. Не всегда при прокладке линии хватает длины провода в бухте, а также иногда требуется разветвление большого провода на несколько небольших.

В настоящее время применяется три основных способа коммутации данного кабеля:

  • механический;
  • метод сварки;
  • использование сплайса.

Стоит заметить, что напрямую к компьютеру оптоволокно не подключается. Если в квартиру заведено оптоволокно для доступа к Интернету, то в этом случае нужен специальный роутер с возможностью подключения оптиковолоконного кабеля, или специальный медиаконвертер преобразующий оптический сигнал.

Работу по соединению выполняют в два этапа:

  • кусок кабеля небольшого размера с установленным на конце коннектором приваривают к окончанию оптического провода при помощи автоматического сварочного аппарата;
  • в последствии установленный коннектор соединяют с разъемом на другом конце кабеля.

Коммутация таким методом требует постоянной чистки в процессе эксплуатации. Потеря сигнала в таком случае велика, производители не рекомендуют применять такой метод для наружного монтажа оптических линий.

Сплайс — это некая конструкция, часто пластиковый блок, внутри которого закрепляются оптические волокна разных кабелей. Процесс соединения выполняют по следующей схеме:

  • первоначально от изоляции очищаются два окончания соединяемых кабелей;
  • при помощи сплайса происходит совмещение очищенных концов ;
  • в последствии место коммутации тщательно изолируется .

Данный способ подразумевает меньшие потери сигнала, чем механический. В процессе эксплуатации необходимо проверять совмещение центров срощенных концов.

Данный метод считается самым надежным и позволяет применять оптиковолоконные провода, срощенные таким образом при наружном монтаже . Потери сигналов в этом случае минимальные. Для сварки понадобится специальное автоматическое устройство.

Рассказывалось о самых распространенных типах оптоволоконного кабеля, применяемых на Украине. А сегодня - кабель в разрезе, и по ходу повествования - некоторые практические моменты его монтажа.

Мы не будем останавливаться на подробной структуре всех видов кабеля. Возьмем некий усредненный типовой ОК:

  1. Центральный (осевой) элемент.
  2. Оптическое волокно.
  3. Пластиковые модули для оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Броня.
  7. Внешняя полиэтиленовая оболочка.

Что же представляет каждый слой при подробном рассмотрении?

Центральный (осевой) элемент

Стеклопластиковый прут в полимерной оболочке или без нее. Основное назначение - придает жесткость кабелю . Стеклопластиковые стержни без оболочки плохи тем, что легко ломаются при изгибе и повреждают расположенное вокруг них оптоволокно.

Оптическое волокно

Нити оптического волокна чаще всего имеют толщину в 125 микрон (примерно с волос). Они состоят из сердечника (по которому, собственно, идет передача сигнала) и стеклянной же оболочки немного другого состава, обеспечивающей полное преломление в сердечнике.

В маркировке кабеля диаметр сердечника и оболочки обозначается цифрами через слэш. К примеру: 9/125 - сердцевина 9 мкм, оболочка - 125 мкм.

Количество волокон в кабеле варьируется от 2 до 144, это также фиксируется цифрой в маркировке.

В зависимости от толщины сердечника оптоволокно подразделяется на одномодовое (тонкий сердечник) и многомодовое (большего диаметра). В последнее время многомод применяется все реже, поэтому останавливаться на нем не будем. Отметим только, что предусмотрен он для использования на небольшие расстояния. Оболочку многомодового кабеля и патчкордов обычно делают оранжевого цвета (одномодовый - желтый).

В свою очередь одномодовое оптическое волокно бывает:

  • Стандартное (маркировка SF, SM или SMF );
  • Со смещенной дисперсией (DS, DSF );
  • С ненулевой смещенной дисперсией (NZ, NZDSF или NZDS).

В общих чертах - оптоволоконный кабель со смещенной дисперсией (в т.ч. с ненулевой) применяется на гораздо большие расстояния, чем обычный.

Поверх оболочки стеклянные нити покрыты лаком, и этот микроскопический слой тоже играет важную роль. Оптоволокно без лакового покрытия повреждается, крошится и ломается при малейшем воздействии. В то время как в лаковой изоляции его можно скручивать и подвергать некоторой нагрузке. На практике оптоволоконные нити неделями выдерживают вес кабеля на опорах, если в процессе эксплуатации рвутся все остальные силовые стержни.

Однако не стоит возлагать на прочность волокон слишком большие надежды - даже покрытые лаком они легко ломаются. Поэтому при монтаже оптических сетей, особенно при ремонте действующих магистралей, требуется предельная аккуратность.

Пластиковые модули для оптических волокон

Это пластиковые оболочки, внутри которых - пучок оптоволоконных нитей и гидрофобная смазка. В кабеле может быть либо одна такая туба с оптоволокном, либо несколько (последнее - чаще, особенно если волокон много). Модули выполняют функцию защиты волокон от механических повреждений и попутно - их объединения и маркировки (если модулей в кабеле несколько). Однако нужно помнить, что пластиковый модуль при изгибе довольно просто переламывается, и ломает находящиеся в нем волокна.

Какого-то одного стандарта на цветную маркировку модулей и волокон нет, но каждый производитель прикрепляет к барабану с кабелем паспорт, в котором это обозначено.

Пленка и полиэтиленовая оболочка

Это элементы дополнительной защиты волокон и модулей от трения, а также влаги - в некоторых видах оптического кабеля под пленкой содержится гидрофоб. Пленка сверху может быть дополнительно армирована переплетением нитей и пропитана гидрофобным гелем.

Пластиковая оболочка выполняет те же функции, что и пленка, плюс служит прослойкой между броней и модулями. Есть модификации кабеля, где ее вообще нет.

Броня

Это может быть либо кевларовая броня (сплетенные нити), либо кольцо стальных проволок, либо лист гофрированной стали:

  • Кевлар применяется в тех видах оптоволоконного кабеля, где содержание металла недопустимо или если нужно снизить его вес.
  • Кабель с броней из стальных проволочек предназначен для подземной укладки непосредственно в грунт - прочная броня защищает от многих повреждений, в т.ч. от лопаты.
  • Кабель с гофроброней прокладывают в трубах или кабельной канализации, защитить такая броня может лишь от грызунов.

Внешняя полиэтиленовая оболочка

Первый и практически самый важный уровень защиты. Плотный полиэтилен призван выдерживать все нагрузки, выпадающие на долю кабеля, поэтому если он повреждается, существенно увеличивается риск порчи кабеля. Нужно следить, чтобы оболочка:

a) Не была повреждена при монтаже - иначе попавшая внутрь влага увеличит потери на линии;

b) Не касалась в процессе эксплуатации о дерево, стену, угол или ребро конструкции и т.д., если есть риск возникновения трения в этом месте при ветровых и иных нагрузках.

Подавляющее большинство кабелей для медиацентров, компьютеров, аудио- и видеооборудования используют для коммуникации компонентов электрические сигналы. В этом случае как аналоговые, так и цифровые потоки переносятся от устройства к устройству в виде импульсов тока по проводникам. Исключение в классе соединителей аппаратуры - звуковой оптический кабель для телевизора.

История и суть технологии

Оптическая передача сигналов была темой для фантастов всего лишь несколько десятилетий назад. Возможность использовать на практике невероятную скорость и плотность данных, на которые способен свет, была заветной целью для пионеров связи. Ещё в 1840-х годах физики Даниэль Колладон и Жак Бабине продемонстрировали способность света к отражениям в струе воды, а в 1854 г. другой физик Джон Тиндаль доказал, что световой поток может быть изогнут вместе с носителем на примере падающей в резервуар воды из освещённой трубы.

В 1880 году Александр Белл запатентовал оптическую телефонную систему, назвав её фотофоном, однако ранее созданный им телефон оказался более практичным. Упорства изобретателя и его вдохновения идеей посылать сигналы через воздух оказалось недостаточно для популяризации устройства - атмосфера не пропускала свет так же надёжно, как провода - электричество.

В последующие десятилетия оптические сигналы использовались в некоторых частных случаях связи, например, при передаче сообщений между судами. Сам фотофон оказался невостребованным изобретением до открытий лазеров и прорыва в волоконно-оптических технологиях. Экспериментальная модель была пожертвована Беллом Смитсоновскому институту и пролежала там на полке до наших дней.

Бурное развитие оптоволоконных технологий пришлось на вторую половину XX века. В первых системах коммуникаций в качестве источника использовался лазер. Но уже в 1980-х годах исследователи разработали волоконно-оптический кабель на основе стекловолокна, способный передавать обычный световой сигнал на большие расстояния. С этого времени технология нашла практическое применение в телекоммуникационных системах. Большинство современных стандартов светопередачи по волокну предполагают следующие основные этапы транспортировки информации:

  • создание оптического сигнала из электрического;
  • ретрансляция сигнала по волокну с сохранением его силы и без искажений;
  • приём оптического сигнала;
  • преобразование его в электрический.

Наиболее часто используемые передатчики - полупроводниковые устройства (светодиоды), оптимально работающие в необходимом частотном диапазоне модуляции. Приёмником служит фотодетектор в комбинации с усилителем для восстановления ослабленного или искажённого сигнала. Сам волоконно-оптический провод состоит из следующих компонентов:

  • Сердцевина. Изготовлена из материала с крайне низким коэффициентом преломления.
  • Оболочка. Зеркальное покрытие, обеспечивающее полное внутреннее отражение.

Одна из особенностей световых проводов - сложность соединения в месте разреза. Подобные процедуры требуют специального оборудования и микронной точности. Поэтому для бытового применения используются только готовые кабели кратной длины.

Стандарт TOSHIBA

Стандарт интерфейса Toshiba-link, или TOSLINK, был введён в 1983 году известным японским концерном и первоначально предназначался для использования в комплекте с фирменными проигрывателями компакт-дисков. Оптические сигналы, передаваемые по этому порту, имели такую же форму, как и электрические, лишь с той разницей, что в TOSLINK использовались для передачи импульсы красного света. Лазер не применялся в качестве источника, вместо него работал простой и недорогой LED. Заявленное надёжное расстояние передачи ограничивалось десятью метрами, но на практике не превышало пяти.

Момент появления Toshiba-link совпал с началом эпохи домашних кинотеатров, что и обусловило его присутствие на аудио- и видеокомпонентах бытовых систем в качестве интерфейса для передачи цифровых данных с помощью света. Поскольку в TOSLINK для транспортировки информационного потока использовался только оптоволоконный кабель, такая коммутация в сравнении с электрической обладала некоторыми несомненными преимуществами:

  • нечувствительностью к электромагнитным помехам;
  • отсутствием собственного электромагнитного излучения;
  • возможностью обеспечить полную гальваническую развязку между оборудованием.

Все эти качества имеют большое значение для звуковоспроизводящей аппаратуры, конструкторы которой немало сил тратят на борьбу с помехами и наводками при коммутации блоков между собой. Для многих меломанов появление такого интерфейса открыло новые возможности в построении собственных систем.

Со временем присутствие этого типа оптического соединения стало почти стандартом для телевизоров, ресиверов, DVD-проигрывателей, усилителей, компьютерных звуковых карт и даже игровых консолей. Основное назначение TOSLINK в бытовой аппаратуре - обеспечить возможность без потерь обрабатывать объёмный стерео- и многоканальный звук в таких форматах, как DTS или Dolby Digital.

Сравнение с HDMI

Есть немало способов подключения звука телевизора через домашний кинотеатр, обеспечивающих полноценный результат. Наиболее популярный метод - коммутация через HDMI. Таким способом можно передавать как аудио-, так и видеосигнал. Этот интерфейс вытеснил на вторые роли оптоволокно прежде всего потому, что TOSLINK способен нести только аудиоданные и требует отдельной коммутации с помощью компонентных или композитных кабелей для передачи видеосигнала. Это не единственный недостаток оптического соединения.

Кроме преимуществ в универсальности, HDMI обладает сравнительно более высокой пропускной способностью. Для TOSLINK новые формы объёмного звука, например, Dolby Thrue HD и DTS-HD, находятся за пределами передачи без искажений.

Несмотря на то что стандарту более тридцати лет, он до сих пор является актуальным интерфейсом. Оптический кабель по-прежнему привлекателен для коммутации до 7.1 каналов аудио высокого разрешения. Для большинства потребительских инсталляций разница при использовании HDMI или TOSLINK не будет заметной.

Одна из наиболее распространённых причин применения светового соединения - наличие большого парка старых ресиверов высокого качества с оптическим входом на борту. Для любителей хорошего звука их замена на новые не имеет смысла. Кроме того, подавляющее большинство наборов HDTV, Blu-Ray плееров и игровых консолей до сих пор оснащаются оптическим портом.

Одна из причин помех в телевизионном и радиооборудовании - некачественно работающее заземление или его отсутствие. Это может вызвать гул в акустических системах или даже привести к повреждению оборудования. В таких случаях полностью устранить раздражающие искажения можно, изолировав устройства друг от друга с помощью оптического кабеля вместо привычного HDMI.

Современные технологии позволили TOSLINK достичь предела своей производительности. Он эволюционировал благодаря чистоте оптического проводника, прозрачности линз и гибкости без потери сигнала.

Оптимизация этих трёх параметров привела к отсутствию слышимой разницы в сравнении с коаксиальным соединением, поэтому, несмотря на универсальность HDMI, скромный оптический кабель для телевизора и домашнего кинотеатра не потерял своего значения.

Критерии выбора при покупке

Прежде всего необходимо убедиться, что планируемые к соединению устройства оснащены разъёмами, предназначенными для передачи оптических сигналов. Это легко узнаваемый трапециевидный порт с заглушкой, который, как правило, сопровождается надписью OPTICAL AUDIO, TOSLINK или Digital Audio Out (Optical). Если устройство включено, он сразу привлекает к себе внимание слабым красным свечением вокруг заглушки порта.

Для оптоволокна нет такого заметного различия в результатах в зависимости от бренда или конструкции, как для аналоговых соединительных кабелей. В этом смысле они сходны с другими цифровыми интерфейсами. В любом случае при выборе оптического кабеля нужно обратить внимание на следующее:

Кроме того, качественный кабель должен быть сделан из множества волокон маленького диаметра. Изделия из монопровода толщиной свыше 200 мкм больше подвержены ослаблениям отражённого сигнала, чем мультиволоконные сборки.

Очень важно обратить при покупке на состояние кабеля и признаки того, что он подвергался изгибу или чрезмерному скручиванию во время хранения или транспортировки. Подобные повреждения однозначно приводят к искажениям передаваемого сигнала или полной потере работоспособности.

Подключение к кинотеатру

Прежде всего нужно помнить о том, что оптические аудиокабели - это не обычные металлические проводники, прощающие неделикатное обращение с собой. Оптоволоконные соединители ни в коем случае нельзя сгибать, прилагая усилия, и всегда следует иметь в виду их чувствительность к ударам. Само подключение TOSLINK к телевизору - простая процедура, не требующая каких-либо инструментов или технических знаний. Рекомендуемая последовательность действий:

Следует иметь в виду, что, если используемые в кинотеатре акустические системы или усилитель недостаточно качественные, даже самый дорогой оптический кабель не способен улучшить звук. В подобных случаях не стоит тратиться на оптоволоконное соединение, а лучше поэкспериментировать с другими способами коммутации.

Хорошие кабели могут проявить себя только в наборе с аппаратурой соответствующего класса. Современный TOSLINK способен справиться с очень сложными задачами. Производственные процессы и возможности обработки материалов в XXI веке вышли на уровень, недостижимый для того времени, когда способность передавать аудиоданные световым потоком в бытовой технике вызывала восхищение. Кварц высокого качества, мультиволоконные проводники, низкая апертура геометрии сердцевины, большая гибкость в сочетании с малыми потерями - эти достижения позволяют обеспечить безупречную передачу даже самых сложных многоканальных звуковых дорожек.


Коммутационный или оптический шнур представляет собой отрезок волоконно оптического кабеля, который имеет на обоих концах коннекторы различного вида. При построении ВОЛС сегодня почти невозможно осуществлять передачу данных без использования оптических шнуров.

Для чего предназначены?

Они используются для соединения двух распределительных устройств или соединения распределительного устройства с активным оборудованием. Можно сказать, что такие шнуры являются главным средством, предназначенным для соединения оптоволокон при построении ВОЛС. Если соединение в патч-кордах осуществляется благодаря имеющимся на концах разъемам, то соединять между собой обычные отрезки оптоволоконного кабеля необходимо с применением специального оборудования, коим является сварочный аппарат для оптоволокна .

Типы оптических шнуров

Сегодня можно выделить такие типы оптоволокон:

  • симплексные (с одним волокном);
  • дуплексные (с двумя волокнами);
  • одномодовые;
  • многомодовые.

Волокна дуплексных или симплексных патч-кордов защищены вторичным покрытием из полимерного материала диаметром 0,09 см. Кабель имеет высокую прочность благодаря наличию в нем кевларовых нитей. Оба конца патч-корда снабжаются оптическими разъемами (коннекторами), которые имеют пластмассовые хвостики, предотвращающие выпадение разъема. Дуплексные патч-корды используются для распределительных панелей, которые размещаются в оптических кроссах или на сетевом оборудовании.

Для получения соединительного или переходного патч-корда отрезок кабеля с обеих сторон снабжается оптическими коннекторами, которые могут быть разных типов: SC, FC, ST, LC. В зависимости от типа коннектора, который располагается на конце патч-корда, определяется предназначение этого коммутационного шнура. Например, соединительный шнур обладает одинаковыми типами коннекторов на концах отрезка кабеля. А переходный патч-корд снабжен коннекторами, имеющими различный тип.

Наиболее универсальным для построения оптоволоконной сети считается коммутационный шнур с коннектором ST. Без этого шнура практически невозможно построить сеть, которая будет передавать данные.

Основные характеристики оптических шнуров

Итак, можно сказать, что такой шнур является мини-кабелем, который имеет на обоих концах специальные оптические коннекторы. Функция этого изделия заключается в обеспечении надежного соединения в кроссе, который может устанавливаться в напольный шкаф 42U , между сетевыми устройствами и распределяющим оптическим узлом.

Коммутационные шнуры могут быть выполнены в стандартных размерах: 2,3,5,7,10,15,20 метров. Однако по желанию заказчика оптические шнуры изготавливаются нестандартной длины, именно такой, которая потребуется для конкретного случая. Коммутационные шнуры могут иметь на концах коннекторы, которые относятся к разным типам. Также изготавливаются монтажные шнуры, которые выполняются в виде отрезка волоконно-оптического кабеля со специальным буферным слоем, равным 0,9 мм. С одного края такой шнур имеет оптический разъем, который предназначается для оконцовывания волокон оптоволоконного кабеля путем осуществления работ по сварке. А для этого потребуется специальный аппарат для сварки оптоволокна , который будет обеспечивать надежное и качественное соединение в месте сварного участка.

Ссоры