Краткое описание основных технологических процессов топливного производства.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

по дисциплине

Перегонка нефти. Применение испаряющих агентов

Технология природных энергоносителей и углеродных материалов

Иркутск 2017 г.

Введение

1. Фракционный состав нефти

2. Основные нефтяные фракции

Заключение

Список используемой литературы

Введение

Нефть представляет собой сложную смесь жидких органических веществ, в которых растворены различные твердые углеводороды и смолистые вещества. Кроме того, часто в ней растворены и сопутствующие нефти газообразные углеводороды. Разделение сложных смесей на более простые или в пределе - на индивидуальные компоненты называется фракционированием. Методы разделения базируются на различии физических, поверхностных и химических свойств разделяемых компонентов. При исследовании и переработке нефти и газа используются следующие методы разделения: физическая стабилизация (дегазация), перегонка и ректификация, перегонка под вакуумом, азеотропная перегонка, молекулярная перегонка, адсорбция, хроматография, применение молекулярных сит, экстракция, кристаллизация из растворов, обработка как химическими реагентами, так и карбамидом (с целью выделения парафинов нормального строения). Всеми этими методами возможно получить различные фракции, по составу и свойствам резко отличающиеся от исходного продукта. Часто эти методы комбинируют. Так, например, абсорбция и экстракция при разделении смолистых веществ или экстракция и перегонка в процессе экстрактивной перегонки. При детальном исследовании химического состава нефти практически используются все перечисленные выше методы.

Наиболее распространенные методы и положены в основу заводской переработки нефти. В процессе перегонки при постепенно повышающейся температуре компоненты нефти отгоняются в порядке возрастания их температур кипения.

Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя.

В условиях лабораторной перегонки нефти или нефтепродуктов при постепенно повышающейся температуре отдельные компоненты отгоняются в порядке возрастания их температур кипения, или то же самое, в порядке уменьшения давления их насыщенных паров. Следовательно, нефть и ее продукты характеризуются не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.

1. Фракционный состав нефти

нефть испарение перегонка агент

Поскольку нефть представляет собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности температурой кипения при данном давлении Принято разделять нефть и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты называют фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постоянно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения и конца кипения.

При исследовании качества новых нефтей (т. е. составлении технического паспорта), их фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колоннами (например, на АРН-2 по ГОСТ 11011-85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам перегонки так называемую кривую истинной температуры кипения в координатах температура -- выход фракций в % мас., (или % об.).

Нефти различных месторождений значительно различаются по фракционному составу и, следовательно, по потенциальному содержанию дистиллятов моторного топлива и смазочных масел. Большинство нефтей содержит 10-30 % бензиновых фракций, выкипающих до 200 % и 40-65% керосиногазойлевых фракций, перегоняющихся до 350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, Самотлорская нефть содержит 58 % светлых, а газоконденсаты большинства месторождений почти полностью (85-90 %) состоят из светлых. Добываются также очень тяжелые нефти, состоящие в основном из высококипящих фракций (например, нефть Ярегского месторождения, добываемая шахтным способом).

Углеводный состав нефти -- является наиболее важным показателем их качества, определяющим выбор метода переработки, ассортимент и эксплуатационные свойства получаемых нефтепродуктов. В исходных нефтях содержатся в различных соотношениях все классы углеводов, кроме алкенов: алканы, цикланы, арены, а также гетероатомные соединения. Алканы (СnН2n+2) -- парафиновые углеводы -- составляют значительную часть групповых компонентов нефтей, газоконденсатов и природных газов. Общее содержание их в нефтях составляет 25-75 % маc. и только в некоторых парафинистых нефтях типа Мангышлакской достигает 40-50 %. С повышением молярной фракций нефти содержание в них алканов уменьшается. Попутные нефтяные и природные газы практически полностью, а прямогонные бензины чаще всего на 60-70 % состоят из алканов. В масляных фракциях их содержание снижается до 5-20 % маc. Из алканов в бензинах преобладают 2- и 3-монометилзамещенные, при этом доля изоалканов с четвертичным углеродным атомом меньше, а этил- и пропилзамещенные изоалканы практически отсутствуют. С увеличением числа атомов углерода в молекуле алканов свыше 8 относительное содержание монозамещенных снижается. В газойлевых фракциях (200-350 °С) нефтей содержатся алканы от додекана до эйкозана. Установлено, что среди алканов в них преобладают монометилзамещенные и изопреноидные (с чередованием боковых метильных групп через три углеродных атома в основе углеродной цепи) структуры. В среднем содержание алканов изопреноидного строения составляет около 10-11 %.

Циклоалканы (ц. СnН2n) -- нафтеновые углеводы -- входят в состав всех фракций нефтей, кроме газов. В среднем в нефтях различных типов они содержатся от 25 до 80 % мас. Бензиновые и керосиновые фракции представлены в основном гомологами циклопентана и циклогексана, преимущественно с короткими (C1 -- С3) алкилзамещенными цикланами. Высококипящие фракции содержат преимущественно полициклические гомологи цикланов с 2-4 одинаковыми или разными цикланами сочлененного или конденсированного типа строения. Распределение цикланов по фракциям нефти самое разнообразное. Их содержание растет по мере утяжеления фракций и только в наиболее высококипящих масляных фракциях падает. Можно отметить следующее распределение изомеров цикланов: среди С7 -- циклопентанов преобладают 1,2 -- и 1,3-диметилзамещенные; С8 -- циклопентаны представлены преимущественно триметилзамещенными; среди алкилциклогексанов преобладает доля ди- и триметилзамещенные, не содержащие четвертичного атома углерода.

Цикланы являются наиболее высококачественной составной частью моторного топлива и смазочных масел. Моноциклические цикланы придают моторному топливу высокие эксплуатационные свойства, являются более качественным сырьем в процессах каталитического реформинга. В составе смазочных масел они обеспечивают малое изменение вязкости от температуры (т. е. высокий индекс). При одинаковом числе углеродных атомов цикланы по сравнению с алканами характеризуются большей плотностью и, что особенно важно, меньшей температурой застывания.

Арены (ароматические углеводороды) с эмпирической формулой СnНn+2-2Ка (где Ка -- число ареновых колец) -- содержатся в нефтях обычно в меньшем количестве (15-50 %), чем алканы и цикланы, и представлены гомологами бензола в бензиновых фракциях. Распределение их по фракциям различно и зависит от степени ароматизированности нефти, выражающейся в ее плотность. В легких нефтях содержание аренов с повышением температуры кипения фракции, как правило, снижается. Нефти средней плотности цикланового типа характеризуются почти равномерным распределением аренов по фракциям. В тяжелых нефтях содержание их резко возрастает с повышением температуры кипения фракций. Установлена следующая закономерность распределения изомеров аренов в бензиновых фракциях: из C8-аренов больше 1,3-диметилзамещенных, чем этилбензолов; С9-аренов преобладают 1,2,4-триметилзамещенные. Арены являются ценными компонентами в автобензине (с высокими октановым числом), но нежелательными в реактивном топливе и дизельном топливе. Моноциклические арены с длинными боковыми алкильными цепями придают смазочным маслам хорошие вязкостно-температурные свойства.

2. Основные нефтяные фракции

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Сначала из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.

Основные фракции нефти следующие:

* Газолиновая фракция, собираемая от 40 до 200 °С, содержит углеводороды от С5Н12 до С11Н24. При дальнейшей перегонке выделенной фракции получают газолин (tкип = 40-70 °С), бензин

(tкип = 70-120 °С) - авиационный, автомобильный и т.д.

* Лигроиновая фракция, собираемая в пределах от 150 до 250 °С, содержит углеводороды от С8Н18 до С14Н30. Лигроин применяется как горючее для тракторов. Большие количества лигроина перерабатывают в бензин.

* Керосиновая фракция включает углеводороды от С12Н26 до С18Н38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.

* Газойлевая фракция (tкип > 275 °С), по-другому называется дизельным топливом.

* Остаток после перегонки нефти - мазут - содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения. В результате получают соляровые масла (дизельное топливо), смазочные масла (автотракторные, авиационные, индустриальные и др.), вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине). Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки летучих компонентов из мазута остается гудрон. Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках.

3. Метод однократного и постепенного испарения

Разделение нефти на составные части (фракции) по их температурам кипения в целях получения товарных нефтепродуктов или их компонентов. Перегонка нефти-- начальный процесс переработки нефти на нефтеперерабатывающих заводах, основанный на том, что при нагреве нефти образуется паровая фаза, отличающаяся по составу от жидкости. Фракции, получаемые в результате перегонки нефти, обычно представляют собой смеси углеводородов. С помощью методов многократной перегонки нефтяных фракций удаётся выделить некоторые индивидуальные углеводороды. Перегонка нефти осуществляется методами однократного испарения (равновесная дистилляция) или постепенного испарения (простая перегонка, или фракционная дистилляция); с ректификацией и без неё; в присутствии перегретого водяного пара --испаряющего агента; при атмосферном давлении и под вакуумом. При равновесной дистилляции разделение нефти на фракции происходит менее четко по сравнению с простой перегонкой. Однако в первом случае при одной и той же температуре нагрева в парообразное состояние переходит большая часть нефти. В лабораторной практике в основном применяется простая перегонка нефти с ректификацией паровой фазы на установках периодического действия. В промышленности используется перегонка нефти с однократным испарением в сочетании с ректификацией паровой и жидкой фаз. Такое сочетание позволяет проводить перегонку нефти на установках непрерывного действия и добиваться высокой чёткости разделения нефти на фракции, экономного расходования топлива на её нагрев. Применение водяного пара приводит к снижению температурного режима, увеличению отбора нефтяных фракций и повышению концентрации высококипящих компонентов в остатке. На промышленных установках перегонка нефти вначале проводится при атмосферном давлении, а затем под вакуумом. При атмосферной перегонке нефть нагревается не выше 370 °С, так как при более высокой температуре начинается расщепление углеводородов -- крекинг, а это нежелательно из-за того, что образующиеся непредельные углеводороды резко снижают качество и выход целевых продуктов.

В результате атмосферной перегонка нефти отгоняются фракции, выкипающие примерно от 30 до 350--360 °С, и в остатке остаётся мазут. Из нефтяных фракций, выкипающих до 360 °С, получаются различные виды топлив (бензины, топлива для реактивных и дизельных двигателей), сырьё для нефтехимического синтеза (бензол, этилбензол, ксилолы, этилен, пропилен, бутадиен), растворители и др. Дальнейшая перегонка мазута проводится под вакуумом (остаточное давление 5,3--8 кн/м2, или 40--60 мм рт. ст.), чтобы свести к минимуму крекинг углеводородов. В СССР на ряде нефтеперерабатывающих заводов производительность установок атмосферно-вакуумной переработки нефти доводилась до 8 млн. т нефти в год.

При перегонке с однократным испарением нефть нагревают в змеевике какого-либо подогревателя до заранее заданной температуры. По мере повышения температуры образуется все больше паров, которые находятся в равновесии с жидкой фазой, и при заданной температуре парожидкостная смесь покидает подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одна и та же. Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая.

Перегонка с многократным испарением состоит из двух или более однократных процессов перегонки с повышением рабочей температуры на каждом этапе.

Если при каждом однократном испарении нефти происходит бесконечно малое изменение ее фазового состояния, а число однократных испарений бесконечно большое, то такая перегонка является перегонкой с постепенным испарением.

Четкость разделения нефти на фракции при перегонке с однократным испарением наихудшая по сравнению с перегонкой с многократным и постепенным испарением.

Если для нефтяной фракции построить кривые разгонки с однократным и многократным испарением, то окажется, что температура начала кипения фракций при однократном испарении выше, а конца кипения ниже, чем при многократном испарении. Если высокой четкости разделения фракций не требуется, то метод однократного испарения экономичнее. К тому же при максимально допустимой температуре нагрева нефти 350 -- 370°С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающих выше 350 -- 370°С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расходования топлива на нагрев сырья. Исходная нефть прокачивается насосом через теплообменники, где нагревается под действием тепла отходящих нефтяных фракций и поступает в огневой подогреватель (трубчатую печь). В трубчатой печи нефть нагревается до заданной температуры и входит в испарительную часть (питательную секцию) ректификационной колонны. В процессе нагрева часть нефти переходит в паровую фазу, которая при прохождении трубчатой печи все время находится в состоянии равновесия с жидкостью. Как только нефть в виде парожидкостной смеси выходит из печи и входит в колонну (где в результате снижения давления дополнительно испаряется часть сырья), паровая фаза отделяется от жидкой и поднимается вверх по колонне, а жидкая перетекает вниз. Паровая фаза подвергается ректификации в верхней части колонны, считая от места ввода сырья. В ректификационной колонне размещены ректификационные тарелки, на которых осуществляется контакт поднимающихся по колонне паров со стекающей жидкостью (флегмой). Флегма создается в результате того, что часть верхнего продукта, пройдя конденсатор-холодильник, возвращается в состоянии на верхнюю тарелку и стекает на нижележащие, обогащая поднимающиеся пары низкокипящими компонентами.

4. Перегонка нефти с использованием испаряющего агента

Для ректификации жидкой части сырья в нижней части ректификационной части колонны под нижнюю тарелку необходимо вводить тепло или какой-либо испаряющий агент. В результате легкая часть нижнего продукта переходит в паровую фазу и тем самым создается паровое орошение. Это орошение, поднимаясь с самой нижней тарелки и вступая в контакт со стекающей жидкой фазой, обогащает последнюю высококипящими компонентами.

В итоге сверху колонны непрерывно отбирается низкокипящая фракция, снизу -- высококипящий остаток.

Испаряющий агент вводится в ректификационную колону с целью повышения концентрации высококипящих компонентов в остатке от перегонки нефти. В качестве испаряющего агента используются пары бензина, лигроина, керосина, инертный газ, чаще всего -- водяной пар.

В присутствии водяного пара в ректификационной колонне снижается парциальное давление углеводородов, а следовательно их температура кипения. В результате наиболее низкокипящие углеводороды, находящиеся в жидкой фазе после однократного испарения, переходят в парообразное состояние и вместе с водяным паром поднимаются вверх по колонне. Водяной пар проходит всю ректификационную колонну и уходит с верхним продуктом, понижая температуру в ней на 10 -- 20°С. На практике применяют перегретый водяной пар и вводят его в колонну с температурой, равной температуре подаваемого сырья или несколько выше (обычно не насыщенный пар при температуре 350 -- 450°С под давлением 2 -- 3ат).

Влияние водяного пара заключается в следующем:

Интенсивно перемешивается кипящая жидкость, что способствует испарению низкокипящих углеводородов;

Создается большая поверхность испарения тем, что испарение углеводородов происходит внутрь множества пузырьков водяного пара.

Расход водяного пара зависит от количества отпариваемых компонентов, их природы и условий внизу колонны. Для хорошей ректификации жидкой фазы внизу колонны необходимо, чтобы примерно 25% ее переходило в парообразное состояние.

В случае применения в качестве испаряющего агента инертного газа происходит большая экономии тепла, затрачиваемого на производство перегретого пара, и снижение расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, т.к. сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил широкого применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов парогазовой смеси (низкого коэффициента теплоотдачи) и трудности отделения отгоняемого нефтепродукта от газового потока.

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции -- лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом.

Чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.

Итак, водяной пар уменьшает парциальное давление паров углеводородов, облегчает их испарение и понижает в колонне температуру, но, кроме того, он создает необходимые для ректификации условия (градиент давлений углеводородных паров) и выполняет роль двигателя.

Необходимо указать на следующие недостатки применения водяного пара в качестве испаряющего агента:

Увеличение затрат энергии (тепла и холода) на перегонку и конденсацию;

Повышение нагрузки колонн по парам, что приводит к увеличению диаметра колонны;

Увеличение сопротивления и повышение давления в колонне и других аппаратах;

Обводнение нефтепродуктов и необходимость их последующей сушки;

Усиление коррозии аппаратуры в присутствии сероводорода и хлористого водорода и образование больших количеств сточных вод;

Тепло его конденсации не используется.

В этой связи в последние годы в мировой нефтепереработке проявляется тенденция к существенному ограничению применения водяного пара и к переводу установок на технологию сухой перегонки или в качестве испаряющего агента использовать легкие нефтяные фракции. Однако чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки; но чем он легче, тем больше он теряется в процессе перегонки, поэтому в качестве испаряющего агента рекомендуют применять керосино-газойлевую фракцию.

Заключение

Нефть, нефтяные фракции и нефтепродукты представляют собой, как правило, смеси очень большого числа близко кипящих компонентов. Число компонентов в бензиновых фракциях может достигать 500, а в масляных фракциях еще больше. Как правило, их разделяют путем перегонки на отдельные части, каждая из которых является менее сложной смесью. Нефтяные фракции, в отличие от индивидуальных соединений, не имеют постоянной температуры кипения. Они выкипают в определенных интервалах температур, то есть имеют температуры начала и конца кипения (Тнк и Ткк). Тнк и Ткк зависят от химического состава фракции. Таким образом, фракционный состав нефти и нефтепродукта показывает содержание в них (в объемных или весовых процентах) различных фракций, выкипающих в определенных температурных пределах. Этот показатель является важнейшей характеристикой нефтяных смесей и имеет большое практическое значение.

Полные данные о характеристике состава нефти и нефтепродуктов позволяют решать главные вопросы переработки: проводить сортировку нефти и нефтепродуктов на базах смешения, определять варианты переработки нефти (топливный, топливно-масляный, или нефтехимический), выбирать схемы переработки, определять глубину отбора масляных фракций от потенциала (отношение массы фракций, выделенных на установке, к их массе, содержащейся в нефти), выход отдельных фракций. Знание фракционного состава нефтепродукта позволяет рассчитать их важнейшие эксплуатационные характеристики. Вследствие особенностей химического состава нефтей разных месторождений, физико-химические характеристики идентичных по температуре кипения фракций будут неодинаковы. Каждая нефть имеет свою характерную кривую разгонки, обусловленную специфическим распределением в ней отдельных компонентов (углеводородных и неуглеводородных соединений) как по содержанию, так и по температуре кипения.

Изменения физико-химических характеристик взаимно коррелируют. На этом основаны многие методы определения характеристик и состава нефти и нефтепродуктов, и в настоящее время накоплен значительный объем информации о корреляционных взаимосвязях. Однако большинство из них нашли ограниченное применение из-за громоздкости и неприспособленности для использования в информационных технологиях.

Список использованных источников

1. Мановян А.К. Технология первичной переработки нефти и природного газа.- М.: Химия, 2001

2. Гуревич И.Л. - Технология переработки нефти и газа Ч. 1. - М.: Химия, 1972.-111 c.

3. М.В. Стародуб, Ю.П. Ясьян, П.А. Пуртов, Ю.В. Аристович - Технология нефти. Подготовка нефти у переработке, Краснодар: Изд.дом ЮГ, 2011.

4. Подвинцев И.Б. Нефтепереработка. Практический вводный курс: Учебное пособие/ И.Б. Подвинцев - Долгопрудный: Издательский Дом «Интеллект», 2011.-31 с.

Размещено на Allbest.ru

...

Подобные документы

    Первичная и вторичная перегонка нефти. Особенности перегонки с постепенным и многократным испарением. Принцип работы дефлегматора. Перегонка в присутствии испаряющего агента, который вводят в низ колонны для создания требуемого парового орошения фракций.

    презентация , добавлен 26.06.2014

    Упоминания о нефти в трудах древних историков и географов. Нефть в XX веке как основное сырьё для производства топлива и множества органических соединений. Технологические процессы перегонки нефти: термический, каталитический крекинг, риформинг.

    реферат , добавлен 15.10.2009

    Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.

    контрольная работа , добавлен 02.05.2011

    Ректификация нефтяных смесей. Системы теплообмена установок первичной перегонки нефти и ректификации углеводородных газов. Оценка возможности повышения эффективности системы теплообмена. Рассмотрение оптимизированной схемы с позиции гидравлики.

    дипломная работа , добавлен 20.10.2012

    Состав скважинной продукции. Принципиальная схема сбора и подготовки нефти на промысле. Содержание легких фракций в нефти до и после стабилизации. Принципиальные схемы одноступенчатой и двухколонной установок стабилизации нефти, особенности их работы.

    презентация , добавлен 26.06.2014

    Описание процесса переработки нефти: атмосферная перегонка, вакуумная дистиляция, каталитический риформинг, изомеризация. Эффективный фонд времени и годовой производительности оборудования. Определение выхода продукта по технологическим установкам.

    курсовая работа , добавлен 22.01.2015

    Процесс первичной перегонки нефти, его схема, основные этапы, специфические признаки. Основные факторы, определяющие выход и качество продуктов первичной перегонки нефти. Установка с двухкратным испарением нефти, выход продуктов первичной перегонки.

    курсовая работа , добавлен 14.06.2011

    Кривая истинных температур кипения нефти и материальный баланс установки первичной переработки нефти. Потенциальное содержание фракций в Васильевской нефти. Характеристика бензина первичной переработки нефти, термического и каталитического крекинга.

    лабораторная работа , добавлен 14.11.2010

    Ознакомление с процессом подготовки нефти к переработке. Общие сведения о перегонке и ректификации нефти. Проектирование технологической схемы установки перегонки. Расчет основной нефтеперегонной колонны К-2; определение ее геометрических размеров.

    курсовая работа , добавлен 20.05.2015

    Классификация нефтей и варианты переработки. Физико-химические свойства Тенгинской нефти и ее фракций, влияние основных параметров на процессы дистилляции, ректификации. Топливный вариант переработки нефти, технологические расчеты процесса и аппаратов.

У людей, далеких от химии, слово "углеводород", скорее всего, ассоциируется с нефтью и газом. Удивительного в этом ничего нет, поскольку, нефть и природный газ на начало 21-го столетия продолжают оставаться основными мировыми энергоносителями и сырьем для химической промышленности. Если вы слишите с экрана телевизора словосочетание "природные углеводороды", с вероятностью 99% можно сказать, что речь идет именно о нефти или газе.

Так уж сложилось, что за свою геологическую историю, которая составляет порядка 4,5 млрд. лет, наша планета накопила в своих недрах колоссальные объемы нефти, которую люди назвали "черным золотом", ибо нефть является сырьем для колоссального кол-ва продуктов, без которых современная жизнь попросту немыслима - это разнообразные синтетические спирты, моющие средства, резины и пластмассы, растворители, химические волокна и т.п. (список можно продолжать до бесконечности). В этом списке мы не упомянули бензин, на котором работают миллиарды двигателей внутреннего сгорания, установленных на автомобилях, самолетах, кораблях и других механизмах.

Именно благодаря крупным нефтяным месторождениям некоторые среднеазиатские государства за короткое время превратились из стран "третьего мира" в настоящие цветущие оазисы современной цивилизации.

По своей сути нефть является осадочным материалом животного и растительного происхождения, который находился сотни миллионов лет в земной коре. С химической точки зрения нефть представляет сложную смесь углеводородов, имеющих различные значения молекулярной массы - в жидкой смеси растворены легкие и тяжелые углеводороды.

Для того, чтобы нефть стала "черным золотом", необходимо выделить из черной жижи ее ценные составные компоненты или, говоря научным языком, произвести рафинирование (очищение ) сырой нефти. Данный процесс осуществляется на специальных нефтеочистительных или нефтеперерабатывающих заводах (НПЗ), где производится промышленное очищение нефтяной смеси и ее отдельных соединений, из которых затем получают топливо и сырье для химической промышленности. Такая очистка состоит из нескольких процессов, первым из которых идет фракционная перегонка сырой нефти.

В основе фракционной перегонки нефти лежит процесс конденсации нагретого пара на более холодных поверхностях. Например, простейшим примером перегонки является процесс самогоноварения.

Процесс перегонки можно использовать для отделения и очистки смеси, поскольку в первую очередь будет закипать та составляющая жидкой смеси, которая имеет наименьшую температуру кипения - пары этой составляющей будут конденсироваться в жидкость, которую потом можно собирать, получая уже чистый компонент. Затем, будет закипать составляющая с более высокой точкой кипения и т.д.

Аналогичный метод используется при очистке нефти (фракционная перегонка), когда нефтяная смесь нагревается, после чего осуществляется выделение и сбор различных фракций сырой нефти. Фракцией называют группу углеводородов, имеющих одинаковую точку кипения.

Схема фракционной перегонки сырой нефти показана на рисунке ниже.

Сырая нефть предварительно нагревается в специальной печи, что приводит к ее испарению - горячие нефтяные пары направляются в громадную колонную фракционной перегонки, где, собственно, и происходит разделение ее на фракции. Наиболее легкие углеводороды (имеющие низкую молекулярную массу) поднимаются в верхнуюю часть колонны, соответственно, наиболее тяжелые углеводороды (имеющие высокую молекулярную массу), собираются в нижней части колонны. По мере того, как каждая фракция достигает своей точки кипения, осуществляется ее сбор и отвод из колонны фракционной перегонки.

Все углеводороды, входящие в одну фракцию, сходны по размерам и сложности, поэтому испльзуются в химической промышленности для одних и тех же целей.

Принято выделять 6 фракций:

  1. Первая фракция (газы ) имеет точку кипения до 40°C. Основным компонентом первой фракции является газ метан CH 4 . Также продуктами первой фракции являются газы пропан C 3 H 8 и бутан C 4 H 10 . Данные газы нашли широкое применение в качестве топлива, кроме этого, нефтепродукты первой фракции используются в производстве различных пластмасс.
  2. Вторая фракция (бензины ) имеет точку кипения 40-180°C. Начинается вторая фракция пентаном C 5 H 12 и заканчивается деканом C 10 H 22 . Путем повторной перегонки из нефтепродуктов второй фракции получают петролейный эфир (40-70°C), авиационный бензин (70-100°C), автомобильный бензин (100-120°C).
  3. Третья фракция (керосины ) имеет точку кипения 180-270°C. В третью фракцию входят углеводороды в диапазоне от C 10 H 22 до C 16 H 34 . Нефтепродукты третьей фракции используются в качестве ракетного топлива.
  4. Четвертая фракция (соляровые масла ) имеет точку кипения 270-360°C. C 12 H 26 -C 20 H 42 . Нефтепродукты четвертой фракции используются в качестве сырья для получения смазочных масел и дизельного топлива.
  5. Пятая фракция (мазут ) имеет точку кипения 360-550°C. В пятую фракцию входят углеводороды от C 20 до C 36 , которые являются сырьем для получения тяжелых смазочных масел и минеральных масел, вазелина, парафина.
  6. Шестая фракция (асфальт ) имеет точку кипения выше 550°C. В данную фракцию входят остаточные полутвердые и твердые материалы.

Определение состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и ректификации.

Выход фракций нефти

Нефть, газовые конденсаты и их фракции представляют собой многокомпонентную смесь из соединений углеводородов. В . Поэтому определение состава этой смеси как совокупности всех входящих в их состав соединений - сложнейшая и не всегда разрешимая задача.

Расходы на покупку сырой нефти, составляющие около 80% расходов НПЗ, наиболее важный фактор, определяющий рентабельность нефтяной компании. Качество и ценность сырой нефти зависят от ее кривой ИТК, определяющей содержание фракции светлых нефтепродуктов, выкипающих до 360°C, фракции 360-540°C и кубового продукта (>540°C), и содержания примесей, таких как сера, азот, металлы и т.д.

Однако кривая ИТК не отражает химического состава нефтяных фракций, который, в свою очередь, влияет на выход и свойства продукции установок для преобразования и повышения сортности нефтепродуктов на НПЗ. Таким образом, знание кривой ИТК и химической природы фракций сырой нефти имеет чрезвычайно важное значение для улучшения экономических показателей НПЗ. К сожалению, для получение этой информации необходимы лабораторные анализы, требующие больших финансовых и временных затрат.

Основные фракции

Углеводородный газ

Газ, входящий в состав данной нефти состоит в основном из бутанов (73,9 % мас.) выход газов на нефть составляет 1,5 % мас. Пропан — бутановая фракция будет использована в качестве сырья газофракционирующих установок с целью производства индивидуальных углеводородов, топлива и компонента автомобильного бензина.

Фракция НК-62°С

Фракция НК-62°С будет использована как сырьё для процесса каталитической изомеризации с целью повышения октанового числа.

Фракция 62-85°С

Фракцию 62-85°С называют “бензольной”, она будет использоваться как компонент товарного бензина и для получения бензола.

Фракция 85-120°С

Фракция 85-120°С в смеси с фракцией 120-180°С будет использована как сырье для установки каталитического риформинга с целью повышения октанового числа. Предварительно отправляется на гидроочистку.

Фракция 120-180°С и 180-230°С

Фракция 120-180°С будет использована в смеси с фракцией 180-230°С как компонент реактивного топлива. Реактивное топливо не подходит по температуре вспышки, поэтому нужно удалить часть лёгких компонентов.

Способы добычи нефти

Индивидуальный состав нефтепродуктов

В настоящее время индивидуальный состав продуктов нефти может быть достаточно надежно определен методами газожидкостной хроматографии только для единичных бензиновых фракций. Поэтому индивидуальный углеводородный состав не может быть положен в основу прогнозных методов расчета теплофизических свойств (ТФС) ввиду его недоступности для потребителей.

В то же время фракционный состав и структурно-групповой углеводородный состав могут иметь более плодотворное применение на пути построения методов расчета теплофизических свойств нефти.

Поэтому ниже рассмотрены методики пересчета и экстраполяции кривых разгонок и способы расчета структурно-группового углеводородного состава фракций.

Фракционный состав нефти и нефтепродуктов

Определение данного вида состава нефти и ее продуктов происходит путем разделения по температурам кипения методом перегонки и ректификации.

Совокупность выхода (в процентах по массе или объему) отдельных фракций, которые выкипают в определенных температурных диапазонах, называется фракционным составом нефти, нефтепродукта или смеси. Для более полной характеристики определяется относительная плотность и средняя молярная масса каждого погона и смеси в целом. По результатам испарения строят кривую ИТК, которая содержит достаточно полную информацию о составе смеси.

Ректификация по ГОСТ 11011-85 в аппарате АРН-2 ограничивается температурой 450-460 °С из-за возможного термического разложения остатка. Проведение данного вида исследования нефтей рекомендуется в устройстве для перегонки АРН-2 по методу ГрозНИИ в колбе Мановяна до температуры выкипания 560-580 °С. При этом не происходит искажения кривой ИТК.

Фракционный состав, особенно светлых товарных нефтепродуктов и широких фракций, часто определяют перегонкой в аппарате Энглера по ГОСТ 2177-82, что значительно проще ректификации. Кривая разгонки по Энглеру позволяет достаточно надежно определить характеристические температуры кипения фракций. Однако при расчете фазовых равновесий предпочтительнее иметь кривую ИТК. Для получения такой кривой предложен ряд эмпирических процедур.

Например, для светлых нефтепродуктов известна методика БашНИИНП. Основываясь на том, что разность температур, полученных при разгонке товарного нефтепродукта по ИТК и по Энглеру, в определенной точке выкипания нефтепродукта является почти постоянной, можно записать

Характеризация физико-химических свойств (ФХС) узких нефтяных фракций (псевдокомпонентов)

При расчете процессов ректификации многокомпонентных смесей (МКС) необходимо использовать физико-химические и термодинамические свойства всех компонентов, составляющих разделяемую МКС. Поскольку в рассматриваемом случае декомпозиция исходной непрерывной смеси на псевдокомпоненты носит достаточно условный характер, процедура расчета физико-химических свойств отдельных псевдокомпонентов приобретает особое значение.

Известно , что любое химическое вещество обладает совокупностью характеристических констант, причем значения характеристических констант зависят от химического строения молекул вещества. Это положение может быть распространено и на псевдокомпоненты, особенно если значения характеристических констант определены экспериментально.

Кстати, прочтите эту статью тоже: Особенности переработки тяжелой нефти

В качестве основной и минимально необходимой характеристики псевдокомпонента принята его среднеарифметическая (между началом и концом выкипания фракции) температура кипения.

Однако, эта температура не в полной мере характеризует псевдокомпонент, поскольку она не учитывает особенности состава нефтей различного типа (различных месторождений). Для более точной оценки ФХС псевдокомпонентов необходима информация об углеводородном составе фракций.

Эта информация в косвенной форме в кривых ОИ и ИТК содержится. Более того, по закону сохранения масс усредненные (среднеинтегральные) значения псевдохарактеристических констант и вероятного углеводородного состава для фракций, выделенных по сравниваемым кривым при одинаковых расходных пределах выкипания, должны совпадать (за исключением их температурных пределов выкипания) .

Поэтому для оценки углеводородного состава моторных топлив вполне допустимо использование кривой ОИ – как более простой и удобной при экспериментальном определении. Однако при расчете процессов разделения (прежде всего ректификации) необходимо использовать только кривую ИТК.

Для расчетов в качестве псевдохарактеристических констант всех компонентов (псевдокомпонентов) МКС используются стандартные свойства (температуры кипения, температуры фазовых переходов, давления насыщенных паров, плотности газовой и жидкой фаз при стандартных условиях, показатели преломления, вязкости, энтальпий и др.), а также критические свойства. Эти константы характеризуют химическую индивидуальность компонента, т.е. представляют «химический паспорт» вещества. Характеристические свойства являются функциями специфических химических параметров вещества: молярной массы и структуры молекулы вещества :

Из (1.1) следует, что все стандартные свойства оказываются взаимосвязанными и могут быть выражены друг через друга. Так молярная масса какого либо углеводорода (псевдокомпонента) может быть выражена в виде функции от его стандартных свойств: температуры кипения, плотности, показателя преломления и прочих свойств, а также от комбинации этих свойств. В качестве примера можно привести формулы Б. П. Войнова , Крега и Мамедова для расчета молекулярной массы углеводородов:

Поэтому количество вариантов расчета ТФС псевдокомпонентов оказывается достаточно большим, что в определенной мере затрудняет их практическое использование.

Для расчета ФХС широких нефтяных фракций, состоящих из нескольких псевдокомпонентов, используется правило аддитивности, т.е. вклад каждой узкой фракции в свойства более широкой фракции определяется относительной концентрацией узкой фракции в более широкой.

Кстати, прочтите эту статью тоже: Перевод кинематической вязкости в динамическую

В УМП процедуры расчета ФХС для непрерывных смесей автоматизированы: пользователь в соответствии с принятой температурной разбивкой кривой ИТК на псевдокомпоненты задает пределы выкипания отдельных псевдокомпонентов (отдельных узких фракций), после чего заполняет спецификацию для каждого выбранного псевдокомпонента, задавая его характеристические свойства, известные пользователю.

В качестве минимально необходимой информации, как уже указывалось, должна быть задана средняя температура кипения псевдокомпонента, а в качестве дополнительной задаются свойства (плотность, показатель преломления и т.д.), известные пользователю. Чем более полно определена эта информация, тем точнее будет охарактеризован каждый псевдокомпонент, а значит, и точнее будут результаты последующего моделирования. Для примера на рис. 1.7 приведены кривые распределения характеристических свойств (t ср , p, n ) для прямогонного гидроочищенного бензина .

Рис. 1.7. Кривые распределения температуры кипения (t ср ), плотности (p ) и показателя преломления (n ) фракции прямогонного гидроочищенного бензина

В соответствии с принятым условием достаточно плавного изменения характеристических свойств при изменении температуры кипения отдельных компонентов (число индивидуальных компонентов очень велико) зависимости всех свойств от доли отгона вещества (или от температуры отгона) должны быть также непрерывными.

На основе данной информации могут быть рассчитаны все основные свойства (T кр , P кр , Z кр , энтальпийные характеристики) как отдельных псевдокомпонентов, так и среднеинтегральные значения этих свойств для фракции в целом, а также определены вероятные брутто-формулы гипотетических псевдокомпонентов .По сути такой же подход используется и при взаимном пересчете кривых ОИ и ИТК.

При этом наличие даже неполной информации (только отдельных свойств для отдельных фракций даже в ограниченном диапазоне изменения доли отгона) позволяет заметно повысить адекватность обобщающей информации. Так, для примера, приведенного на рис. 1.4, учет только одного свойства по фракции в целом (плотность мазута) заметно уточняет вид конечной характеристики (кривая ИТК).

ВАМ БУДЕТ ИНТЕРЕСНО:

Нефтеперерабатывающие заводы России На НПЗ «Газпром нефти» в Москве установлена колонна вакуумной перегонки нефти установки «Евро+» Способы добычи нефти Себестоимость добычи нефти

Принципы перегонки нефти

Разделение любой смеси (в частности, нефти) на фракции путем перегонки основано на различии в температурах кипения ее компонентов. Так, если смесь состоит из двух компонентов, то при испарении компонент с более низкой темпера­турой кипения (низко-кипящий, НКК) переходит в пары, а компонент с более высокой температурой кипения (высококипящий, ВКК) остается в жид­ком состоянии. Полу­ченные пары конденси­руются, образуя дистиллят, неиспарившаяся жидкость назы­вается остатком. Та­ким образом, НКК пе­реходит в дистиллят, а ВКК - в остаток.

Описанный процесс называется простой перегонкой. Для наиболее полного разделения компонентов приме­няют более сложный вид перегонки - перегонку с ректификацией. Ректификация заключается в противоточном контактировании па­ров, образующихся при перегонке, с жидкостью, получающейся при конденсации этих паров. Для осуществле­ния ректификации в колонне необходимо создать восходящий поток паров и нисходящий поток жидкости. Первый поток образуется за счет тепла, вводимого в нижнюю (отгонную) часть колонны, вто­рой - за счет холодного орошения, подаваемого в верхнюю (кон­центрационную) часть колонны (о других видах орошения см. ни­же).

Рис. 4.1 Схема колпачковой тарелки:1-пластина; 2- сливной стакан; 3- -колпачок; 4- патрубок для прохода паров; 5- прорези в колпачке для прохода паров; 6- подпорная перегородка для создания уровня жидкости на тарелке; 7- стенка колонны; 8- кольцевое пространство

На тарелках колонны встречаются две фазы: паровая; (с более высокой температурой), и жидкая (с более низкой температурой). При этом пары охлаждаются, и часть высококипящего компонента конденсируется и переходит в жидкость. Жидкость же нагревается и часть низкокипящего компонента из нее испаряется, переходя в паровую фазу. Такой процесс происходит многократно на каждой тарелке. В процессе перегонки и ректификации нефти и нефтепро­дуктов давление насыщенных паров и равновесие между парами и жидкостью играют решающую роль.

Такой процесс происходит многократно на каждой тарелке. В процессе перегонки и ректификации нефти и нефтепро­дуктов давление насыщенных паров и равновесие между парами и жидкостью играют решающую роль.

Давление насыщенных паров жидкости .

Давлением насыщенного пара жидкости называют давление, развиваемое ее парами при данной температуре в условиях равно­весия с жидкостью. Это давление возрастает с повышением темпе­ратуры и уменьшением теплоты испарения жидкости. Кривые дав­ления насыщенных паров углеводо­родов, входящих в состав светлых нефтепродуктов, в зависимости от температуры показаны на рис.4.2

Давление насыщенных паров смесей и нефтяных фракций зави­сит не только от температуры, но и от состава жидкой и паровой фаз. Каза­лось бы, что при очень низких температурах или достаточно высо­ком давлении все газы должны переходить в жидкое состояние. Од­нако для каждого газа существует такая температура, выше кото­рой он никаким повышением давления не может быть переведен в жидкость. Это так называемая критическая температура Т кр. Дав ление паров, отвечающее критической температуре, называют кри­тическим давлением Р Кр - Удельный объем газа при критических температуре и давлении называют критическим объемом. В крити­ческой точке исчезает прерывность между газообразным и жидким состояниями.

Перегонка (дистилляция) - это процесс физического разделения нефти и газов на фракции (компоненты), различающиеся друг от дру­га и от исходной смеси по температурным пределам (или температу­ре) кипения. По способу проведения процесса различают простую и сложную перегонку.

Существует два основных способа перегонки нефти: с постепенным, или многократным, испарением (в кубах); с однократным испарением (в трубча­тых печах). При постепенном испарении образующиеся пары не­медленно выводятся из системы (например, фракции при разгонке нефтепродуктов на стандартном аппарате, а также на одном из ку­бов кубовой батареи). При однократном испарении продукт нагревают в трубчатой печи до определенной температуры, обеспечивающей получение нуж­ного отгона, причем в течение всего времени нагрева пары не отде­ляют от жидкости - состав системы не меняется. По достижении нужной температуры образовавшиеся в системе жидкая и паровая фазы разделяются. Это разделение происходит в колонне или ис­парителе (эвапораторе), куда поступает продукт после его нагре­ва в трубчатой печи. Перед разделением обе фазы - пары и жид­кость- находятся в равновесии друг с другом, поэтому однократ­ное испарение называют также равновесным. Таким образом, при перегонке нефти с однократным испарением вся смесь паров, обра­зовавшаяся при заданной температуре, сразу отделяется от жидко­го остатка, а затем разделяется на фракцию

Перегонка нефти с однократным испарением в отличие от по­степенного испарения в кубах, занимающего несколько часов, про­ходит в несколько минут и при более низких температурах. Это объясняется тем, что низкокипящие фракции при однократном ис­парении способствуют испарению высококипящих компонентов при более низких температурах.

Рис.4.3 Изобарные кривые

Для пояснения процесса испарения возьмем изобарные кривые (рис. 3.6). Допустим, что есть жидкость с низкокипящего компонента (НКК) Ао при температуре t 0 . Это состояние системы характеризуется точ­кой Ао . Начнем нагревать жидкость. Графически это изобразится прямой А 0 А 1 параллельной оси ординат. Жидкость при достижении температуры t 1 начинает кипеть (это вытекает из самого спо­соба построения изобар).

С учетом равновесности жидкости и паров со­став образовавшихся паров опреде­ляется горизонталью A 1 B 1 , проводи­мой до пересечения с кривой паровой фазы в точке. Действительно, ес­ли температура насыщенных паров равна t 1 , то состав их определяется точкой B 1 , абсцисса которой равна t 1 (делается допущение, что количе­ство выделяемых паров ничтожно мало и что состав жидкости до и после закипания остается неизмен­ным и равным х о).

Рассмотрим теперь другой слу­чай. Допустим, что та же смесь со­става х о нагрета до более высокой температуры t. При этом пары, кото­рые начали образовываться уже при температуре t 1 не отделяются от жидкости, из-за чего состав всей си­стемы, включающий и пары и жид­кость, остается постоянным и рав­ным х о Допустим далее, что, достигнув температуры t в точке С, мы отделили пары от жидкости. Каков же состав этих паров и жидкости? Для решения этого вопроса достаточно через точку С провести горизонталь АВ, соответствующую температуре t. Точки пересечения А к В этой горизонтали с кривыми изобар покажут соответственно состав жидкости х и паров у. При нагревании системы до более высокой температуры t 2 ее состояние характеризуется точками A 2 и В 2 с концентрациями х 2 и у 2 . При этом у 2 совпадает с х о, т. е. у 2 = х о, что возможно только при полном испарении всей жидкости. Таким образом, t 2 является тем­пературой полного испарения жидкости состава х о при однократном испарении, дальнейшее повышение температуры сопровождается только перегревом паров. Из сказанного выше следует, что любая точка, расположенная в области, ограниченной нижней кривой, характеризует наличие только жидкой фазы, а точка, расположенная в области, ограниченной изобарами (площадь линзы), характеризует одновременное существование и паровой и жидкой фаз, располо­женная же в области - существование только паровой фазы. (См С.В.Вержичинская, Химия и технология нефти и газа, стр.60-65).

Способы снижения температуры кипения нефти и ее фракций

При повышении температуры нагрева нефти и увеличении длительности нагрева, когда начинается разложение вы­сокомолекулярных углеводоро­дов - так называемый крекинг. В зависимости от состава нефти этот момент наступает при темпе­ратурах 320-360°С. Однако в ря­де случаев, особенно при получе­нии высококипящих фракций для производства дистиллятных ма­сел и сырья для каталитического крекинга, необходимо нагревать нефть выше указанных пределов. Чтобы предупредить разложение высокомолекулярных углеводоро­дов, необходимо снизить темпера­туру ее кипения при переработке. Это достигается перегонкой в вакууме или подачей водяного пара (иногда и тем и другим).

Вакуум (разрежение) дости­гается в результате откачки (от­соса) из колонны газов, используя вакуумные насосы, или их кон­денсации. Давление в таком ап­парате называется остаточным.

Оно всегда ниже атмосферного (101,3 мПа, или 760 мм рт.ст.). Ва­куум определяется как разность между 101,3 мПа (760 мм рт.ст.) и остаточным давлением. Например, если остаточное давление 13,3 мПа (100 мм рт.ст.), то вакуум составляет: 101,3 - 13,3 = 88 мПа (760- 100 = 660 мм рт. ст.). На рис. 3.8 показана пример­ная зависимость температуры кипения от давления для высокомо­лекулярных фракций нефти со средней температурой кипения меж­ду 350 и 500° С. Итак, чем ниже давление, тем быстрее понижается температура кипения фракции. Например, для фракции со средней температурой кипения 450° С при остаточном давлении 13,3 мПа (100 мм рт. ст.) снижение температуры кипения равно 110°С (точ­ка Л), т. е. фракция в этих условиях закипает при 450 - 110 = = 340° С, а при остаточном давлении 0,665 мПа (5 мм рт.ст.) -при 236°С (450 -214 = 236°С, точка Б). Для фракции со средней тем­пературой кипения 500°С снижение температуры кипения при ос­таточном давлении 13,3 мПа (100 мм рт. ст.) составляет 117° С (точ­ка В), а для фракции 350°С - 350 - 94 = 256°С (точка Г)

Понижение температуры кипения путем перегонки с водяным паром также широко применяют в прак­тике нефтеперерабатывающей про­мышленности, особенно при пере­гонке мазута. Действие водяного пара при перегонке нефти (пар вво­дят через маточник, расположен­ный над дном аппарата) сводится к следующему: бесчисленные пузырь­ки пара образуют внутри нефти ог­ромную свободную поверхность, с которой нефть испаряется внутрь этих пузырьков. Давление паров нефти, будучи ниже атмосферного, недостаточно для его преодоления, т. е. для возникновения кипения и перегонки, но к давлению паров нефти присоединяется давление во­дяного пара, поэтому в сумме (по закону Дальтона) получается дав­ление, несколько превышающее ат­мосферное и достаточное для кипе­ния и перегонки нефти.

Давление пара надо поддерживать таким, чтобы оно могло преодолеть напор столба жидкости и давление в аппарате, а так­же гидравлическое сопротивление трубопроводов. Обычно исполь­зуют пар давлением выше 0,2 МПа (2 кгс/см2); пар должен быть сухим, поэтому его часто перегревают в одном из змеевиков печи.

Значительное снижение температуры перегонки при помощи только вакуума требует создания низкого остаточного давления, что удорожает вакуумную установку и усложняет ее эксплуатацию, применение же перегонки с паром без вакуума вызывает большой расход пара, что также требует больших затрат, связанных с про­изводством пара (например, для перегонки автолового дистилля­та расход пара достигает 75%). Поэтому наиболее выгодным ва­риантом перегонки высокомолекулярных нефтепродуктов является сочетание вакуума с подачей острого пара в перегоняемый нефте­продукт. Такое сочетание применяют при перегонке мазута с по­лучением масляных дистиллятов, сырья для каталитического кре­кинга или гидрокрекинга.

Перегонка нефти с ректификацией

Общие сведения о процессе. В заводских условиях перегонку нефти с однократным испарением ведут на трубчатых установках. Нефть, нагреваясь в трубах печи до требуемой температуры, по­ступает в ректификационную колонну. Здесь она разделяется на две фазы. Первая - паровая фаза - устремляется вверх, а вто­рая - жидкая - стекает в нижнюю часть колонны. В зависимости от необходимости при перегонке нефти или другого продукта по­лучают фракции с определенными пределами выкипания. Такое разделение нефти, достигаемое путем многократного испарения и конденсации углеводородов, как указывалось выше, называется ректификацией.

При ректификации двойной смеси (смеси, состоящей из двух компонентов) через верх колонны уходит в виде паров низкокипящий компонент, а через низ колонны в виде жидкости - высококипящий. На рис. 4.5 показана схема ректификации смеси бензола и толуола. Эта смесь после нагрева в печи поступает по линии в ректификационную колонну. Вверху колонны пары бензола (низкокипящего компонента) по линии поступают в конденса­тор 2, откуда часть сконденсировавшегося бензола поступает по линии в качестве орошения, а остальная часть отводится через холодильник 3 по линии IV в товарный парк. Внизу колонны раз­мещен подогреватель, куда поступает пар по линии VI. Толуол (высококипящий компонент) выводится из колонны по линии V (через холодильник) в товарный парк. При разделении смеси бен­зола и толуола температура вверху колонны должна быть 80,4°С, т. е. соответствовать температуре кипения чистого бензола; внизу колонны температура должна быть выше 110°С. Для ректифика­ции смеси, состоящей из трех компонентов, например бензола, то­луола и ксилола, необходимы две колонны. Из

Рис 4.5 Схема ректификации двойной смеси

нижней части пер­вой колонны отбирают ксилол, а из верхней части - смесь бензола и толуола, которую разделяют на бензол и толуол во второй колонне так же, как показано на рис.4.5.

Для ректификации сложной смеси (к которой относится и нефть) с получе­нием п компонентов или фракций нужно (п-1) простых колонн. Это очень гро­моздко и требует больших капиталовло­жений и эксплуатационных затрат. По­этому на нефтеперегонных установках строят одну сложную колонну, как бы со­стоящую из нескольких простых колонн с внутренними или выносными (рис. 4.6) отпарными секциями, в которые подают водяной пар. На установках большой производительности выносные отпарные секции ставят одна на другую, и они составляют одну отпарную колон­ну (рис. 4.7). Процесс происходит на каждой тарелке. При этом для нормальной работы ректификационной колонны необходимы теснейший контакт между флегмой (жидкостью на тарелке) и вос­ходящим потоком паров, а также соответствующий температурный режим.

Первое обеспечивается конструкцией колпачков и тарелок, второе - подачей орошения, обеспечивающего конден­сацию высококипящих компонентов (путем снятия тепла) в верх­ней части колонны. Создание восходящего потока паров, как ука­зывалось выше, обеспечивается нагреванием в печи или в кубе, а также частичным испарением жидкой фазы внизу колонны при по­мощи кипятильников или водяного пара.

Подачей ороше­ния регулируется температура вверху колонны, создается нисхо­дящий поток жидкости и обеспечивается необходимое снижение температуры паров по мере прохождения их по колонне снизу вверх.

В зависимости от способа орошение бывает холодное (острое), горячее (глухое) и циркуляционное (рис. 3.12).

Горячее орошение

Парциальный конденсатор пред­ставляет собой кожухотрубный теплообменник (рис.4.8а), установленный горизонтально или вертикально на верху колонны. Охлаждающим агентом служит вода, иногда исходное сырье. Поступающие в меж­трубное пространство пары частично конденсируются и возвраща­ются на верхнюю тарелку в виде орошения, а пары ректификата от­водятся из конденсатора. Из-за трудности монтажа и обслуживания и значительной коррозии конденсатора этот способ получил ограни­ченное применение.

Холодное (острое) орошение (рис 4.8б). Этот способ отвода тепла на верху колонны получил наибольшее распространение в практике нефтепереработки. Паровой поток, уходящий с верха ко­лонны, полностью конденсируется в конденсаторе - холодильнике (водяном или воздушном) и поступает в емкость или сепаратор, от­куда часть ректификата насосом подается обратно в ректификаци­онную колонну в качестве холодного испаряющегося орошения, а балансовое его количество отводится как целевой продукт.

Циркуляционное неиспаряющееся орошение (рис 4.8в) Этот вариант отвода тепла в концентрационной секции колонны в техно­логии нефтепереработки применяется исключительно широко не только для регулирования температуры наверху, но и в средних се­чениях сложных колонн. Для создания циркуляционного орошения с некоторой тарелки колонны выводят часть флегмы (или бокового дистиллята), охлаждают в теплообменнике, в котором она отдает тепло исходному сырью, после чего насосом возвращают на выше­лежащую тарелку.

На современных установках перегонки нефти чаще применяют комбинированные схемы орошения. Так, сложная колонна атмосфер­ной перегонки нефти обычно имеет вверху острое орошение и затем по высоте несколько промежуточных циркуляционных орошений. Из промежуточных орошений чаще применяют циркуляционные орошения, располагаемые обычно под отбором бокового погона или использующие отбор бокового погона для создания циркуляционно­го орошения с подачей последнего в колонну выше точки возврата паров из отпарной секции. В концентрационной секции сложных колонн вакуумной перегонки мазута отвод тепла осуществляется преимущественно посредством циркуляционного орошения.

При подводе тепла в низ колонны кипятильником (рис 4.8 г) осуществляют дополнительный подогрев кубового продукта в вы­носном кипятильнике с паровым пространством (рибойлере), где он частично испаряется. Образовавшиеся пары возвращают под ниж­нюю тарелку колонны. Характерной особенностью этого способа является наличие в кипятильнике постоянного уровня жидкости и парового пространства над этой жидкостью. По своему разделительному действию кипятильник эквивалентен одной теоретической та­релке. Этот способ подвода тепла в низ колонны наиболее широко применяется на установках фракционирования попутных нефтяных и нефтезаводских газов, при стабилизации и отбензинивании нефтей, стабилизации бензинов прямой перегонки и вторичных процес­сов нефтепереработки.

При подводе тепла в низ колонны трубчатой печью (Рис.4.8д) часть кубового продукта прокачивается через трубчатую печь, и подогретая парожидкостная смесь (горячая струя) вновь поступает в низ колонны. Этот способ применяют при необходимости обеспе­чения сравнительно высокой температуры низа колонны, когда при­менение обычных теплоносителей (водяной пар и др.) невозможно или нецелесообразно (например, в колоннах отбензинивания нефти).

Место ввода в ректификационную колонну нагретого перегоняе­мого сырья называют питательной секцией (зоной) , где осуществля­ется однократное испарение. Часть колонны, расположенная выше питательной секции, служит для ректификации парового потока и называется концентрационной (укрепляющей) , а другая – нижняя часть, в которой осуществляется ректификация жидкого потока - отгонной, или исчерпывающей секцией .

Четкость погоноразделения - основной показатель эффективнос­ти работы ректификационных колонн, характеризует их разделитель­ную способность. Она может быть выражена в случае бинарных сме­сей концентрацией целевого компонента в продукте.

Как косвенный показатель четкости (чистоты) разделения на практике часто используют такую характеристику, как налегание температур кипения соседних фрак­ций в продукте. В промышленной практике обычно не предъявляют сверхвысоких требований по отношению к четкости погоноразделения, поскольку для получения сверхчистых компонентов или сверхуз­ких фракций потребуются соответственно сверхбольшие капиталь­ные и эксплуатационные затраты. В нефтепереработке, например, в качестве критерия достаточно высокой разделительной способности колонн перегонки нефти на топливные фракции считается налегание температур кипения соседних фракций в пределах 1О-ЗО°С.

Установлено, что на разделительную способность ректификаци­онных колонн значительное влияние оказывают число контактных ступеней и соотношение потоков жидкой и паровой фаз. Для полу­чения продуктов, отвечающих заданным требованиям, необходимо, наряду с другими параметрами ректификационной колонны (давле­ние, температура, место ввода сырья и т.д.), иметь достаточное чис­ло тарелок (или высоту насадки) и соответствующее флегмовое и паровое числа.

Флегмовое число (R ) характеризует соотношение жидкого и па­рового потоков в концентрационной части колонны и рассчитывает­ся как R=L/D, где L и D - количества соответственно флегмы и рек­тификата.

Паровое число (П) характеризует соотношение контактирующихся потоков пара и жидкости в отгонной секции колонны, рассчи­тываемое как П = G/W, где G и W- количества соответственно паров и кубового продукта.

Число тарелок (N) колонны (или высота насадки) определяется числом теоретических тарелок (N T), обеспечивающим заданную чет­кость разделения при принятом флегмовом (и паровом) числе, а так­же эффективностью контактных устройств (обычно КПД реальных тарелок или удельной высотой насадки, соответствующей 1 теоре­тической тарелке). Фактическое число тарелок N ф определяется из опытных данных с учётом эфектифного КПД тарелки n т

На технико-экономические показатели и четкость погоноразделения ректификационной колонны, кроме ее разделительной способ­ности, в значительной степени влияют физические свойства (моле­кулярная масса, плотность, температура кипения, летучесть и др.), компонентный состав, число (би- или многокомпонентный) и харак­тер распределения (непрерывный, дискретный) компонентов пере­гоняемого сырья. В наиболее обобщенной форме разделительные свойства перегоняемого сырья принято выражать коэффициентом относительной летучести.

Чем больше тарелок в колонне и совершеннее их конструкция и чем больше подается орошения, тем четче ректификация. Однако большое число таре­лок удорожает колонну и усложняет ее эксплуатацию, а чрезмерно большая подача орошения увеличивает расход топлива на после­дующее его испарение. Кроме того, увеличивается расход воды и энергии на конденсацию паров и подачу орошения. Коэффициент полезного действия тарелок в зависимости от их конструкции со­ставляет 0,4-0,8.

Для разделения светлых нефтепродуктов (например, керосина и дизельного топлива) в концентрационной части колонн ставят от 6 до 9, в отпарной - от 3 до 6 тарелок. Для разделения масля­ных дистиллятов допускается меньшая четкость ректификации, од­нако количество тарелок между выводами фракций и между вво­дом сырья и выводом нижнего дистиллята должно быть не менее 6. Под первой тарелкой снизу монтируют ситчатый отбойник.

На четкость ректификации кроме количества тарелок и подачи ороше­ния влияют скорость движения паров в колонне и расстояние между тарел­ками. Нормальная скорость паров в колоннах, работающих при атмосфер­ном давлении, 0,6-0,8 м/с, в вакууме 1-3 м/с, а в колоннах, работающих под давлением, - от 0,2 до 0,7 м/с. Увеличение производительности уста­новки при сырье того же состава и увеличение тем самым скорости дви­жения паров ухудшает ректифика­цию, так как пары увлекают с собой капельки флегмы, которая разбрызги­вается на вышележащие тарелки и ухудшает качество получаемой про­дукции. Расстояние между тарелками выбирают таким, чтобы капли флегмы, подхватываемые парами с тарелок, не попадали на следующие тарелки, и что­бы их можно было ремонтировать и чистить. Обычно расстояние между тарелками равно 0,6-0,7 м, для таре­лок некоторых новых конструкций оно в 2--3 раза меньше

Нефтепереработка – достаточно сложный процесс, для проведения которого требуется привлечение . Из добытого природного сырья получают множество продуктов – разные типы топлива, битумы, керосины, растворители, смазки, нефтяные масла и другие. Переработка нефти и начинается с транспортировки углеводородов на завод. Производственный процесс происходит в несколько этапов, каждый из которых очень важен с технологической точки зрения.

Процесс переработки

Процесс переработки нефти начинается с ее специализированной подготовки. Это вызвано наличием в природном сырье многочисленных примесей. В нефтеносной залежи содержится песок, соли, вода, грунт, газообразные частицы. Для добычи большого количества продуктов и сохранения месторождения энергоресурса используют воду. Это имеет свои преимущества, но значительно снижает качество полученного материала.

Наличие примесей в составе нефтепродуктов делает невозможной их транспортировку к заводу. Они провоцируют образование налета на теплообменных аппаратах и других емкостях, что значительно снижает их срок службы.

Поэтому добытые материалы подвергаются комплексной очистке – механической и тонкой. На данном этапе производственного процесса происходит разделение полученного сырья на нефть и . Это происходит при помощи специальных нефтяных сепараторов.

Для очистки сырья в основном его отстаивают в герметических резервуарах. Для активации процесса разделения материал подвергают действию холода или высокой температуры. Электрообессоливающие установки применяются для удаления, содержащихся в сырье, солей.

Как происходит процесс разделения нефти и воды?

После первичной очистки получают труднорастворимую эмульсию. Она представляет собой смесь, в которой частички одной жидкости равномерно распределяются во второй. На этом основании выделяют 2 типа эмульсий:

  • гидрофильная. Представляет собой смесь, где частицы нефти находятся в воде;
  • гидрофобная. Эмульсия в основном состоит из нефти, где находятся частички воды.

Процесс разрушения эмульсии может происходить механическим, электрическим или химическим способом. Первый метод подразумевает отстаивание жидкости. Это происходит при определенных условиях – подогрев до температуры 120-160 градусов, повышение давления до 8-15 атмосфер. Расслаивание смеси обычно происходит в течение 2-3 часов.

Чтобы процесс разделение эмульсии прошел удачно, необходимо не допускать испарение воды. Также выделение чистой нефти осуществляется при помощи мощных центрифуг. Эмульсия разделяется на фракции при достижении 3,5-50 тысяч оборотов в минуту.

Применение химического метода подразумевает применение специальных поверхностно-активных веществ, называемых деэмульгаторами. Они помогают растворить адсорбционную пленку, в результате чего нефть очищается от частиц воды. Химический метод зачастую применяется совместно с электрическим. Последний способ очистки подразумевает воздействие на эмульсию электрического тока. Он провоцирует объединение частиц воды. В результате он легче удаляются из смеси, что позволяет получить нефть высочайшего качества.

Первичная переработка

Добыча и переработка нефти происходит в несколько этапов. Особенностью производства различных продуктов из природного сырья считается то, что даже после качественной очистки полученный продукт не подлежит применению по прямому назначению.

Исходный материал характеризуется содержанием различных углеводородов, которые существенно отличаются молекулярным весом и температурой кипения. В его составе присутствуют вещества нафтеновой, ароматической, парафиновой природы. Также в исходном сырье содержатся сернистые, азотистые и кислородные соединения органического типа, которые также должны быть удалены.

Все существующие способы переработки нефти направлены на ее разделение на группы. В процессе производства получают широкий спектр продукции с разными характеристиками.

Первичная переработка природного сырья осуществляется на основании разных температур кипения ее составляющих частей. Для осуществления данного процесса привлекаются специализированные установки, которые позволяют получить различные нефтепродукты – от мазута до гудрона.

Если перерабатывать природное сырье таким способом, не удастся получить материал, готовый к дальнейшему использованию. Первичная перегонка направлена лишь на определение физико-химических свойств нефти. После ее проведения можно определить необходимость осуществления дальнейшей переработки. Также устанавливают тип оборудования, которое необходимо привлечь для выполнения нужных процессов.

Первичная переработка нефти

Способы перегонки нефти

Выделяют следующие методы переработки нефти (перегонки):

  • однократное испарение;
  • многократное испарение;
  • перегонка с постепенным испарением.

Метод однократного испарения подразумевает переработку нефти при воздействии высокой температуры с заданным значением. В результате образуются пары, которые поступают в специальный аппарат. Его называют испарителем. В данном устройстве цилиндрической формы пары отделяются от жидкостной фракции.

При многократном испарении сырье подвергают обработке, при которой несколько раз осуществляют повышение температуры по заданному алгоритму. Последний способ перегонки является более сложным. Переработка нефти с постепенным испарением подразумевает плавное изменение основных рабочих параметров.

Оборудование для перегонки

Промышленная переработка нефти осуществляется при помощи нескольких аппаратов.

Трубчатые печи. В свою очередь их также разделяют на несколько видов. Это атмосферные, вакуумные, атмосферно-вакуумные печи. При помощи оборудования первого типа осуществляется неглубокая переработка нефтепродуктов, что позволяет получить мазут, бензиновые, керосиновые и дизельные фракции. В вакуумных печах в результате более эффективной работы сырье разделяют на:

  • гудрон;
  • масляные частицы;
  • газойлевые частицы.

Полученные продукты полностью подходят для производства кокса, битума, смазочных материалов.

Ректификационные колонны. Процесс переработки нефтяного сырья при помощи данного оборудования подразумевает ее нагревание в змеевике до температуры 320 градусов. После этого смесь поступает в промежуточные уровни ректификационной колонны. В среднем она имеет 30-60 желобов, каждый из которых размещен с определенным интервалом и оснащен ванной с жидкостью. Благодаря этому пары стекают вниз в виде капель, поскольку образуется конденсат.

Существует также переработка с помощью теплообменных аппаратов.

Вторичная переработка

После определения свойств нефти, в зависимости от потребности в определенном конечном продукте, выбирается тип вторичной перегонки. В основном она заключается в термически-каталитическом воздействии на исходное сырье. Глубокая переработка нефти может происходить при помощи нескольких методов.

Топливный. Применение данного способа вторичной перегонки позволяет получить ряд высококачественных продуктов – автомобильных бензинов, дизельных, реактивных, котельных топлив. Для осуществления переработки не нужно привлекать много оборудования. В результате применения данного метода из тяжелых фракций сырья и осадка получают готовый продукт. К топливному методу перегонки относят:

  • крекинг;
  • риформинг;
  • гидроочистку;
  • гидрокрекинг.

Топливно-масляный. В результате применения данного метода перегонки получают не только различные топлива, но и асфальт, смазочные масла. Это осуществляется при помощи метода экстракции, деасфальтизации.

Нефтехимический. В результате применения данного метода с привлечением высокотехнологичного оборудования получают большое количество продукции. Это не только топливо, масла, а и пластмассы, каучук, удобрения, ацетон, спирт и многое другое.

Как из нефти и газа получаются окружающие нас предметы - доступно и понятно

Данный метод считается более всего распространенным. С его помощью осуществляется переработка сернистой или высокосернистой нефти. Гидроочистка позволяет существенно повысить качество получаемых видов топлива. Из них удаляют различные добавки – сернистые, азотистые, кислородные соединения. Обработка материала происходит на специальных катализаторах в водородной среде. При этом температура в оборудовании достигает показателей 300-400 градусов, а давление – 2-4 Мпа.

В результате перегонки, содержащиеся в сырье, органические соединения разлагаются при взаимодействии с водородом, циркулирующем внутри аппарата. В итоге образуется аммиак, сероводород, которые удаляются из катализатора. Гидроочистка позволяет переработать 95-99% сырья.

Каталитический крекинг

Перегонка осуществляется при помощи цеолитсодержащих катализаторов при температуре 550 градусов. Крекинг считается очень эффективным методом переработки подготовленного сырья. С его помощью из мазутных фракций можно получить высокооктановый автомобильный бензин. Выход чистого продукта в данном случае составляет 40-60%. Также получают жидкий газ (10-15% от исходного объема).

Каталитический риформинг

Риформинг осуществляется при помощи алюмоплатинового катализатора при температуре 500 градусов и давлении 1-4 Мпа. При этом внутри оборудования присутствует водородная среда. Данный метод применяется для превращения нафтеновых и парафиновых углеводородов в ароматические. Это позволяет существенно повысить октановое число производимой продукции. При использовании каталитического риформинга выход чистого материала составляет 73-90% от залученного сырья.

Гидрокрекинг

Позволяет получить жидкостное топливо при воздействии высокого давления (280 атмосфер) и температуры (450 градусов). Также данный процесс происходит с применением сильных катализаторов – оксидов молибдена.

Если гидрокрекинг сочетать с другими методами переработки природного сырья, выход чистых продуктов в виде бензина и реактивного топлива составляет 75-80%. При применении качественных катализаторов их регенерация может не проводиться 2-3 года.

Экстракция и деасфальтизация

Экстракция подразумевает разделение подготовленного сырья на нужные фракции при помощи растворителей. В дальнейшем производится депарафинизация. Она позволяет существенно снизить температуру застывания масла. Также для получения продукции высокого качества ее подвергают гидроочистке. В результате проведения экстракции можно получить дистдизельное топливо. Также с помощью данной методики производят извлечение ароматических углеводородов из подготовленного сырья.

Деасфальтизация необходима для того, чтобы из конечных продуктов дестиляции нефтяного сырья получить смолисто-асфальтеновые соединения. Образовавшиеся вещества активно применяются для производства битума, в качестве катализаторов для осуществления других методов переработки.

Другие методики переработки

Переработка природного сырья после первичной перегонки может осуществляться и другими способами.

Алкилирование. После переработки подготовленных материалов получают высококачественные компоненты для бензина. Метод основан на химическом взаимодействии олефиновых и парафиновых углеводородов, в результате чего получают высококипящий парафиновый углеводород.

Изомеризация . Применение данного метода позволяет получить из низкооктановых парафиновых углеводородов вещество с более высоким октановым числом.

Полимеризация . Позволяет осуществить превращение бутиленов и пропилена в олигомерные соединения. В результате получают материалы для производства бензинов и для проведения различных нефтехимических процессов.

Коксование . Применяется для производства нефтяного кокса из тяжелых фракций, получаемых после перегонки нефти.

Нефтеперерабатывающая отрасль относится к перспективным и развивающимся. Производственный процесс все время усовершенствуется за счет введения нового оборудования и методик.

Видео: Переработка нефти

Любовь