О проекте. Самая амбициозная программа государственной корпорации «Росатом» ведёт отрасль в тупик

«Росатом» подготовил перспективную программу развития атомной энергетики, но эксперты считают, что это путь в прошлое

Осенью прошлого года Правительство РФ утвердило проект «Прорыв» - план «Росатома» по сооружению в стране до 2030 года ряда объектов ядерной энергетики и отработке технологии полного замыкания ядерного топливного цикла. На Татарской АЭС будет построен и введён в эксплуатацию один энергоблок с реактором ВВЭР--ТОИ мощностью 1250 МВт, на Нижегородской АЭС - два подобных энергоблока на 2510 МВт, на Белоярской АЭС - энергоблок №5 с реактором на быстрых нейтронах БН--1200, в Челябинской области - Южноуральская АЭС с реактором на быстрых нейтронах на 1200 МВт, в Северске Томской области - реактор БРЕСТ--300.

Принятие столь масштабной программы, несомненно, ограничит возможности финансирования государством любых других энергетических проектов, ведь стоимость строительства одной только Курской АЭС--2 превысит 200 миллиардов рублей. Неудивительно поэтому, что не все наши эксперты безоговорочно поддержали это решение правительства, а некоторые выступили с разумной критикой по этому поводу.

ЧТО ДАДУТ «БЫСТРЫЕ» НЕЙТРОНЫ

Цивилизованный мир по-прежнему держится на углеводородной энергетике - львиная доля электричества, которое мы потребляем, получена путём сжигания нефти и газа. Но запасов углеводородов на планете хватит ещё на 40-60 лет, спад в добыче нефти и газа может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым днём становится всё острее, а работы по поиску энергетической альтернативы - всё масштабнее.

Если не считать возможности использования энергии ветра и Солнца, до недавнего времени науке были известны всего две такие возможности: извлечение энергии при делении ядер тяжёлых элементов и при слиянии ядер самого лёгкого - водорода. Обе весьма опасны: в первой приходится приручать атомный взрыв, во второй - термоядерную реакцию, которая питает звёзды и пугает нас водородной бомбой. Воплощение первого пути - атомная энергетика развивается с середины прошлого века, однако её доля в мировом энергобалансе меньше, чем даже вклад ветровой и солнечной энергетики - всего 5,5%.

Существует два класса ядерных реакторов: на медленных нейтронах (например, водо-водяные, или ВВЭР) и на быстрых нейтронах. ВВЭР относительно безопасны в эксплуатации и составляют основу современной мировой атомной энергетики. Но работают они только на уране, обогащённом примерно до 5%, и это большая проблема, ведь даже при действующем уровне потребления мировые запасы урана с разумной стоимостью добычи, до 130 долларов за килограмм, истощатся примерно через 100 лет.

Реакторы на быстрых нейтронах (их называют бридерами, то есть размножителями) отличаются от всех остальных: плотность тепловыделения в них в разы больше, и в качестве теплоносителя вместо воды в них приходится использовать жидкий натрий или свинец. Там происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана--238, расположенного вокруг активной зоны. Этот уран превращается в плутоний--239, который затем тоже может использоваться в реакторе как делящийся элемент.

Программа «Росатома» предполагает использовать блоки с «быстрыми» реакторами в сочетании с реакторами на тепловых нейтронах. По идее, бридеры помогут решить проблему накопления отработанного ядерного топлива (ОЯТ) «тепловых» реакторов и приблизиться к так называемому замкнутому ядерному топливному циклу (ЗЯТЦ) - когда объём и токсичность захораниваемого ОЯТ сравняется с объёмом и токсичностью природного сырья «на входе».

Общий недостаток всей современной атомной энергетики состоит в том, что она фактически исключает возможность контроля за нераспространением ядерного оружия на Земле: каждое государство, имеющее современную АЭС, которая постоянно производит плутоний, теоретически может сделать свою собственную атомную дубину.

Второй путь предполагает генерацию энергии при управляемой термоядерной реакции. Однако термоядерные исследования в магнитных ловушках, проводимые в мире более 60 лет, так и не привели к созданию функционирующего реактора даже с КПД, равным нулю - все они требуют куда больше энергии, чем вырабатывают сами. А нерешённые проблемы однозначно выльются в многомиллиардные затраты и десятки лет исследований. И вот вопрос: а есть ли у нас столько времени? Можем ли мы позволить себе ошибку в выборе энергетических приоритетов?

КТО ПРОТИВ И ПОЧЕМУ?

Бывший заместитель директора ВНИИ атомного энергетического машиностроения, профессор Игорь Острецов с единомышленниками, работая ещё в советском Минатоме, обнаружил: при облучении протонами высоких энергий даже свинца или отработанного ядерного топлива реакция деления с выделением энергии тоже происходит, но осколки деления имеют иной изотопный состав и быстро теряют активность.

На этой основе он разработал новый способ извлечения энергии атома - релятивистскую ядерную технологию - и предложил свою программу развития ядерной энергетики, не без основания считая её совершенно безальтернативной. В самом деле, запасы природного и отвального (обеднённого) урана на планете весьма велики, а проблема нераспространения и задача утилизации отработанного ядерного топлива решаются при таком образе действий сами собой.

- Игорь Николаевич, а что не так с бридерами?

Мы не только обеими ногами встали на дорожку развития бридерной технологии получения атомной энергии, но уже и бежим по ней во весь опор. А дорожка-то скользкая и ведёт в тупик, ибо коэффициент воспроизводства топлива в этой технологии - меньше единицы. Увеличить вклад атомной энергетики в общемировой энергетический баланс таким способом не удастся. Бридеры критически нуждаются в высокообогащённом уране. Запасы же такого урана в природе крайне ограничены, мир уже сегодня ощущает урановый дефицит. Вопрос: а может ли такая технология стать полноценной альтернативой углеводородной энергетике? Ответ однозначный: нет, не может. Мало того, она сложна и потому требует огромных ресурсов. Наконец, она крайне опасна. Одно из её «тонких мест» - система охлаждения, где циркулирует жидкий натрий. На открытом воздухе он жадно поглощает атмосферную влагу, горит и взрывается, и водой его не зальёшь. А в бридере, наполненном радиоактивным топливом, этого натрия десятки тонн - что если авария? Но аварии сопровождают развитие бридеров с самого начала. Первый в мире бридер, «Энрико Ферми», в 1957--м запустили США, серьёзная авария произошла там уже в 1966--м, и в 1972--м он остановлен. В 1995 году в Японии из--за утечки 20 тонн радиоактивного натрия едва не взлетел на воздух бридер «Монзю». Оба французских бридера, «Феникс» и «Суперфеникс», тоже были заглушены из--за неполадок.

- Но в США при Буше была даже принята национальная программа по развитию реакторов на «быстрых» нейтронах.

Впечатление такое, что это были пустые декларации, с одной лишь целью - заставить нас выбрать этот путь и пойти по нему. Подождать, пока мы создадим программу, мобилизуем ресурсы, производственные мощности, специалистов, а самим после двинуть в другую сторону. На этой волне у нас и была сформирована программа «Прорыв» (консолидация достижений в разработке реакторов большой мощности на быстрых нейтронах, технологии ЗЯТЦ и новых видов топлива для создания ядерно-энергетического комплекса, основанного на системе АЭС с бридерами - Ред .).

А у них после этого к власти пришёл Обама и свернул бридерную программу США как абсолютно абсурдную. И назначил министром энергетики США человека из Массачусетского технологического института Эрнеста Мониза, специалиста по ускорителям элементарных частиц. Я считаю этот шаг знаковым, внимательному наблюдателю он всё объясняет.

Альтернатива бридерам есть: это новый метод генерации энергии, который мы назвали ядерными релятивистскими технологиями (ЯРТ). Принцип - совместить ядерный реактор с ускорителем элементарных частиц. Результат - ядерная релятивистская электростанция, ЯРЭС - без сверхкритической массы делящихся продуктов и потому абсолютно взрывобезопасная. Она сможет работать на уране из отвалов радиохимических предприятий, на природном уране, на тории. И будет способна «дожигать» в короткоживущие изотопы всю ту гадость, которую сегодня мы не знаем, куда девать - радиоактивные отходы и облучённое ядерное топливо, а также полностью перерабатывать долгоживущие продукты - актиноиды тепловыделяющих элементов подлодок и старых АЭС. Что сократит объём радиоактивных отходов в разы и решит проблему нехватки урана для атомных станций.

- Звучит фантастически.

Всё основано на отечественных разработках. Сердце ЯРЭС - линейный ускоритель Богомолова на обратной волне, сверхкомпактная машина по производству протонов с энергиями порядка 10 ГэВ (гигаэлектронвольт). Классическому ускорителю на каждый ГэВ на выходе нужен 1 километр длины (на 4 ГэВ - 4 километра). А 4- ГэВ-ускоритель Богомолова легко помещается в грузовой отсек транспортного самолёта Ан--124 «Руслан». Это советская разработка, изобретение моего сокурсника по МФТИ Алексея Богомолова. Не все ещё забыли разговоры про советский асимметричный и недорогой ответ на американскую программу «звёздных войн» Рональда Рейгана? Богомоловская машина была частью советского ответа Рейгану - габаритами с железнодорожный вагон, на борту «Руслана» она становится обнаружителем ядерного оружия на большом расстоянии и может уничтожать его пучком протонов. Будь она сегодня на вооружении отечественной морской авиации, фактически обнулила бы весь авианосный флот США.

- Почему же у нас до сих пор нет госпрограммы развития ЯРТ?

Этот вопрос не ко мне. Да, рядом аспектов ЯРТ, глубоко подкритичными системами, занимается Физико--энергетический институт им. А.И. Лейпунского в городе Обнинске (ФЭИ). Некоторые эксперименты ведутся и в Дубне, но при очень скудном финансировании. Бьётся за ЯРТ Валерий Чилап, глава Центра физико-технических проектов «Атомэнергомаш», с ним мы начинали эту работу. Он вложил в эксперименты по ЯРТ на массивной урановой сборке в Дубне почти все собственные средства и годами обивает пороги росатомовского начальства, добиваясь (задумаемся!) объективной экспертизы проекта разработки ЯРТ.

Нет, вы понимаете, до чего мы дошли? Как можно держать такие вещи в долгом ящике? Люди, представляющие интересы государства в важнейших вопросах национальной безопасности, настолько безответственны, до такой степени не боятся совершить ошибку, которая может стоить России её суверенитета (не забыли, что, с недавних пор, бывший министр энергетики США - специалист по ускорителям частиц?).

Кстати: кто сегодня знает, что мы создали радиолокатор на год раньше британцев? Был такой Павел Ощепков, служил на Алтае лейтенантом инженерных войск.

Он сообразил, как определять положение и скорость самолётов при помощи электромагнитных волн. Придумал конструкцию и, как положено, написал докладную своему начальнику. Тот ничего не понял и отправил докладную наверх. Так бумага Ощепкова миновала с десяток командиров и за один (!) месяц добралась до стола самого Ворошилова. Тот тоже ничего не понял и тоже ответственности на себя не взял - собрал экстренное заседание Академии наук СССР и пригласил туда изобретателя. Академики его выслушали и постановили: по науке всё возможно, но априори результат неизвестен. Поэтому академику Иоффе и лейтенанту Ощепкову решили выделить людей и средства для постройки прототипа и его полевых испытаний. Результат доложили «самому» ещё через месяц: есть радиолокатор! В 1934 году. Вот что значит система.

Профессор И.Н. Острецов во время эксперимента в Протвино

СТАВКИ СДЕЛАНЫ?

Для полноты картины мы задали прямой вопрос руководителю проекта департамента коммуникаций Госкорпорации «Росатом» Андрею Иванову: существует ли консолидированное мнение экспертов «Росатома» по предложениям Острецова и его единомышленников?

Андрей Иванов изложил официальную позицию госкорпорации с исчерпывающей ясностью: «Какой--либо государственной программы или проекта ЯРТ на уровне ведущих российских институтов или РАН в настоящее время нет».

А источник, близкий к «Росатому» и пожелавший остаться за кадром, пояснил, что никто в корпорации проекта ядерной релятивистской технологии (ЯРТ) Острецова не видел, не говоря уж о научном и экономическом обосновании тех идей, которые тот постоянно озвучивает для СМИ.

«Но даже если бы он и представил нечто подобное на нашу экспертизу, полагаю, что обратился бы он не по адресу, ведь «Росатом» - это организация практиков, мы воплощаем в жизнь инновации, уже прошедшие путь от физической идеи до надёжно, эффективно и безопасно работающих энергетических установок. А с голыми идеями ему надо в Курчатовский институт, это их прямой профиль. И не будем изображать «Росатом» этаким монстром, который тормозит прогресс человечества. Просто потому, что объективно это не так. Мы - практики, этим и интересны», - добавил он.

Что же касается состоятельности собственной энергетической программы «Росатома», то своё мнение высказали ряд ведущих специалистов отрасли.

Андрей Говердовский, директор ГНЦ ФЭИ им. Лейпунского:

Да, в топливе реакторов ВВЭР используется уран-235, реакторы же на быстрых нейтронах уникальны - они способны размножать топливо, превращая непригодный для «горения» уран-238 в пригодный для «горения» плутоний. Да, здесь есть много проблем. Необходимо заставить вращаться топливо внутри замкнутой энергетической системы, попутно сжигать много радиоактивных отходов. Эти проблемы и решает проект «Прорыв», создавая реакторы и систему обращения с ОЯТ для замкнутого ядерного топливного цикла. И реакторы на быстрых нейтронах - его основа. Мы в России более 30 лет эффективно эксплуатируем БН-600 с натриевым теплоносителем, сейчас ввели в работу БН-800. В атомной энергетике будущего, которая решит проблему накопленных отходов, мы - мировые лидеры.

Валерий Беззубцев, замгендиректора, директор по технологическому развитию АО «Концерн Росэнергоатом»:

Цель проекта сооружения энергоблока с реактором БН-800 - переход от открытого топливного цикла с урановым топливом (БН-600) к замкнутому топливному циклу с уранплутониевым смешанным топливом, создание пилотного производства смешанного топлива и отработка замкнутого цикла с его внедрением в производство. Эта технология основана на использовании уранплутониевого топлива и взаимодополняющей работы традиционных и «быстрых» реакторов, способной обеспечить сырьевую независимость и малоотходность атомной энергетики России. Она вовлекает в энергопроизводство уран-238 из накопленных отвалов, отработавшее ядерное топливо и накопленный плутоний, чем минимизирует отходы, подлежащие окончательной изоляции.

Главное для нас - безопасность: хотя у нас уже есть многолетний успешный опыт эксплуатации БН-600, этого недостаточно. Поэтому проект БН-800 включает пассивные системы безопасности, которые обеспечивают минимальную вероятность аварии с расплавлением активной зоны и исключают выделение плутония в топливном цикле при переработке облучённого ядерного топлива. Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива. Этот опыт будет учтён в проекте БН-1200 - после разработки и утверждения проектной документации, успешного строительства и опыта эксплуатации «головного» энергоблока он должен стать первым в серии таких же БН-1200 на других АЭС. Реактор БН-800 нужен и для отработки технологий ЗЯТЦ - на нём будет использоваться МОКС-топливо на основе плутония, выделенного при переработке уже отработавшего ядерного топлива других реакторов. В настоящее время такой плутоний хранится на складах, и наша задача - утилизировать его в быстрых реакторах.

Отмечу, что не мы одни сделали ставку на быстрые реакторы: ещё в 1987 году руководство КНР включило в свою госпрограмму по развитию высоких технологий проект 863, «Развитие технологии быстрого реактора-бридера». Они решили создать у себя экспериментальный реактор на «быстрых» нейтронах CEFR, 65 МВт тепловой мощности и 20 МВт - электрической, и для оптимизации расходов привлечь иностранцев. Их выбор пал на Россию, что неудивительно - именно у нас самый большой в мире опыт в этой сфере. Это наше сотрудничество с КНР началось в 1992 году, в июле 2010 года мы совместно совершили успешный пуск экспериментального реактора CEFR, в 2011-м подключили его к электросети. А в августе 2010-го РФ и КНР подписали соглашение о строительстве двух энергоблоков на быстрых нейтронах типа БН-800. По стратегическому плану развития атомной энергетики КНР замыкание ядерно-топливного цикла будет достигнуто ими в 2030-х годах. И мы хорошо знаем, как китайцы умеют выполнять то, что наметили.

ЯДЕРНЫЙ КАСКАД

Готовя этот текст к публикации, мы решили узнать, удовлетворён ли профессор Острецов реакцией экспертов «Росатома». Вот что сказал нам Игорь Николаевич:

Хорошо, что «Росатом» наконец-то обозначил свою позицию по ЯРТ. Она, как мы видим, сводится к следующим положениям:

1. Искать новые направления в развитии атомной энергетики - не его дело. Этим должен заниматься Курчатовский институт.

2. Очевидно, поэтому он развивает только то, что получил в наследство от советской атомной промышленности.

3. Для поддержки ЯРТ ему нужны хорошо проработанные предложения.

4. Таким образом, решение может принять только руководство страны. Оно должно собрать и провести совещание по этому вопросу, иначе, как говорит НИЦ «Курчатовский институт»: «Сейчас живёт последнее поколение людей».

Позиция Курчатовского института сегодня однозначна: поскольку в бридерах коэффициент воспроизводства топлива - меньше единицы, без создания мощного источника нейтронов в ближайшей перспективе человечество не выживет. В чём я с ними полностью согласен. Однако в качестве источника нейтронов для извлечения энергии атома эксперты института предлагают термоядерный источник нейтронов, который ещё не создан. Я же предлагаю использовать для этого ядерный каскад, инициированный релятивистскими заряженными частицами в актиноидной мишени полного поглощения, то есть ЯРТ. И считаю, что другой альтернативы для выживания человечества в XXI веке нет.

В середине августа прошлого года президент Владимир Путин поручил правительству, Госкорпорации «Росатом» и НИЦ «Курчатовский институт» подготовить до 1 марта 2017 года предложения о возможности применения в качестве перспективного сырья для ядерного топлива… тория. Его содержание в земной коре в 45 раз выше содержания урана, а месторождения более доступны. Заметим, что в контексте нашего разговора этот вариант имеет явные признаки временного компромисса. К настоящему моменту, однако, по открытым источникам не проходило никаких данных о результатах исполнения этого поручения президента.

ИЗ ДОСЬЕ «СОВЕРШЕННО СЕКРЕТНО»:

Игорь Острецов - д. т. н., профессор, бывший заместитель директора ВНИИ атомного энергетического машиностроения, один из виднейших специалистов по атомной энергетике, автор ряда важных открытий в этой области, руководитель работ по ликвидации последствий аварии на Чернобыльской АЭС со стороны Министерства энергетического машиностроения СССР.

В 1998 году он провёл эксперимент по облучению свинцовой сборки протонами с энергией 5 ГэВ на большом ускорителе Института ядерной физики в Дубне. Очень слабо делящийся свинец нагрелся в разы сильнее, чем предсказывалось известными расчётными кодами! Это были первые указания на возможность создания релятивистской ядерной энергетики - сочетания ускорителя и подкритического реактора, где не нужны ни уран-235, ни плутоний-239. В 2002-м аналогичный опыт был проведён под его руководством на ускорителе в Протвино. 12-часовое облучение свинцовой мишени протонами в диапазоне энергий от 6 до 20 ГэВ привело к тому, что свинец, который сразу после облучения очень сильно «светил», уже через 10 дней снизил активность до уровня естественного фона. Было доказано: ядерная релятивистская энергетика на «грубых» видах топлива - на обеднённом уране, тории, отработанном ядерном топливе - возможна. Провести подобные эксперименты с торием и ураном--238 Острецову не удалось из-за организационных проблем.



поделиться:


Проект «Прорыв» - тема животрепещущая и немного скандальная. И в профессиональном атомном сообществе вокруг него крутится огромное количество споров и рассуждений. А официальный атом частенько обвиняют в нежелании этот проект серьезно обсуждать и как-то предметно комментировать. В качестве опровержения – представляем вам выступление Евгения Олеговича Адамова, которое было опубликовано на портале «proatom.ru» в ответ на открытое письмо читателей этого сообщества. Мы уверены, что тема на этом не закрыта, и будем рады продолжить обсуждение проблемы в рамках нашего блога.


Открытое письмо Е.О.Адамову


Уважаемый Евгений Олегович, как бывшему министру, а сегодня - идеологу и вдохновителю проекта «Прорыв», адресуем Вам вопросы читатели сайта www.proatom.ru. Вместе с ними надеемся получить прямые и исчерпывающие ответы. Также надеемся, что в отрасли еще возможен честный и конструктивный диалог тех, кто принимает решения, с коллегами-атомщиками.


1. Уже более полувека, еще с середины-конца 60-х г.г., говорят и пишут о необходимости создания мощностей для переработки накапливающегося ОЯТ для уже существующей ядерной энергетики и постепенного перехода к ЗЯТЦ. Во времена Минсредмаша даже начали строить завод РТ-2 (Красноярск-26, ныне Железногорск), который должен был обеспечить переработку ОЯТ реакторов типа ВВЭР. Начали и бросили… Говорили, что денег не стало… На РБМК просто жгут топливо, а их ОЯТ никто пока не собирается перерабатывать. ОЯТ от ВВЭР пока лишь складируется. Появление еще одного реактора типа «Прорыв» даже со своим «пристанционным» топливным циклом проблем создания ЗЯТЦ ядерной энергетики России не решит. Потребности страны в переработке ОЯТ могут быть решены лишь созданием мощностей, соизмеримых с проектной мощностью РТ-2. Почему вместо выдумывания «прорывных» технологий не достроить РТ-2, если есть уверенность в том, что технология переработки ОЯТ различных реакторов уже существует, и уже есть знание того, что без ЗЯТЦ доступных запасов урана хватит лишь на 30-40 лет? Однако объем инвестиций в такой ЗЯТЦ с достройкой РТ-2, системы могильников РАО и производств ТВС из рециклированного урана и МОКС-топлива, сегодня может быть оценен в диапазоне 20-50 млрд.долл. США с длительностью реализации 10-15 лет. Без решения проблемы переработки и рециклирования уже существующего ОЯТ все «прорывные» реакторные технологии не стоят даже той бумаги, на которой их рисуют. Как не вспомнить завет сподвижников Остапа Бендера: «Утром - деньги, вечером - стулья». Уж если есть уверенность в том, что без ЗЯТЦ ядерной энергетике конец, то вкладывать их нужно в ЗЯТЦ, но не в «инновационные прорывные погремушки». Вложив деньги в ЗЯТЦ, можно надеяться на то, что «вечером будут стулья».

2. Известно, что на РТ-1 накоплено свыше 30 тонн энергетического плутония, вполне пригодного для «всеядных» быстрых реакторов. До сих пор никто его в быстрые реакторы не закладывал. БН-600 «жует» лишь уран. Почему до сих пор не отважились перевести его на плутоний? Нет мощностей для производства плутониевых ТВС? Есть проблемы с управляемостью реактора? Не известно, куда девать плутониевые ОТВС? Куда делись результаты НИОКР ФЭИ, нарабатывавшиеся более полувека? В чем истинные причины сложившегося положения с быстрыми реакторами и ЗЯТЦ? Почему тот же «Прорыв» предполагает пуск и работу на уране? К сожалению, ответов на эти «простые» вопросы пока нет. Разделяю точку зрения основоположников ядерной энергетики - без ЗЯТЦ ядерная энергетика обречена...

3. Атомный проект - это ГОНКА ВООРУЖЕНИЙ, на карту была поставлена независимость государства. Поэтому в Атомном проекте были привлечены все имеющиеся силы государства. Для программы «Прорыв» не существует подобной необходимости. Команда Кириенко, не имея возможности создавать что-то действительно новое, постоянно достает какое-нибудь старье и делает это флагом Росатома. Для чего нужно «прорывать» то, что в течение многих десятилетий исследовалось? Что, появились какие-то новые идеи или новые материалы, позволяющие решить выявленные ранее проблемы?

4. Как в проекте («Прорыв» - ред) решаются те проблемы, о которые сломались американцы и французы?

Ваше мнение, Евгений Олегович?

Комментарии Евгения Олеговича Адамова в ответ на вопросы читателей PRoAtom.ru

1. Проблема ОЯТ сама по себе недостаточный повод, чтобы активизировать работы по БР и ЗЯТЦ, а лишь одна из задач, решение которой входит в круг проблем ядерной энергетики. Современные способы хранения (в бассейнах, затем в контейнерах) не вызывают в краткосрочной перспективе особого беспокойства. Однако и бесконечное отнесение этой задачи к числу «отложенных решений» невозможно. Очевидно, следует ещё раз перечислить весь набор задач, решение которых стоит перед ядерной энергетикой вообще и входит, в частности, в цели проекта «Прорыв»:

· исключение аварий, требующих эвакуации, а тем более отселения населения, а также выводящих из хозяйственного использования значительные территории;

· полное использование энергетического потенциала добываемого сырья;

· радиационно-эквивалентное обращение ядерных материалов в топливном цикле, с сохранением природного радиационного баланса;

· технологическое усиление режима нераспространения технологий ядерного оружия;

· обеспечение конкурентоспособности ядерной энергетики.

Комплексное решение этих задач составляет содержание выдвинутой в начале 90-х гг. концепции «ядерной энергетики естественной безопасности».

2. Относительно заводов по переработке ОЯТ:

· мощности заводов по переработке ОЯТ были ориентированы на парк реакторов на быстрых нейтронах и решения об их строительстве принимались именно в ориентации на развитие ядерной энергетики с использованием таких реакторов. В реальности у нас работает только одна АЭС с БР, для которой, даже в перспективе ввода БР-800, полномасштабные заводы явно не требуются.

· после развала СССР не только АЭС с реакторами на быстрых нейтронах не строились, но и вообще стройки АЭС были заморожены, потому и дело с использованием ОЯТ сместилось в сторону его хранения и частичного использования продуктов переработки зон АПЛ и ВВЭР-440 в РБМК;

· возвращаясь к постановке вопроса о развитии ядерной энергетики в 2000 г., мы ясно обозначили приоритеты: достройка задельных АЭС, сооружение новых АЭС с ВВЭР по конкурентоспособному проекту, а также последовательный переход к технологиям ядерной энергетики естественной безопасности с замыканием ЯТЦ на базе реакторов на быстрых нейтронах.

· для тщательной отработки технологий переработки и рефабрикации топлива крупные заводы не нужны. Работы исследовательского плана лучше проводить в НИИ: именно с этой целью предусмотрено сооружение ПРК в НИИАРе. Комплексная проверка технологий будет реализована в опытно-демонстрационном блоке БР мощностью 300 МВт с пристанционным ядерным топливным циклом (ПЯТЦ). Затем настанет очередь промышленной реализации в головном комплексе БР+ПЯТЦ при мощности реактора 1000-1200 МВт, очевидно, на площадке БАЭС.

· по мере реализации программы с преимущественным использованием БР, надо будет принять и решения по соотношению объемов переработки на централизованных заводах и ПЯТЦ, очевидно, обоснованных только для куста АЭС с БР, как например, на БАЭС.

3. По поводу использования урана и плутония в БР:

· начиная с EBR-1, при создании всех реакторов на быстрых нейтронах решали первоочередные задачи по физике активной зоны, технологии теплоносителей, специфике оборудования, обучению эксплуатационного персонала, а поскольку урановое топливо уже было освоено - его и использовали.

· французы, в отличие от СССР, предполагая массовое строительство БР, не останавливали своих планов по строительству заводов по переработке ОЯТ. А когда заводы построили, а предполагавшегося парка БР не было, вынуждены были искать для существующих производств применение: так и появился МОХ для PWR.

· Очевидно, что для БР нужно плотное топливо, однако, работы по его отработки, производству и внедрению организованы не были, а, например, достройка БН-800 заканчивается. А потому и зона будет «пёстрой».

· При пуске на уране его затраты за весь срок существования АЭС с БР определяются первой загрузкой и несколькими первичными подпитками до выхода на самообеспечение. Это в 5 раз меньше, чем требуется в течение всего жизненного цикла ТР одинаковой мощности.

· Уже с первой активной зоны в опытно-демонстрационном комплексе БР+ПЯТЦ предусматривается работа на смешанном нитридном уран-плутониевом топливе. Не потому, что сейчас урана уже не хватает, а с тем, чтобы активнее решать именно задачи ЗЯТЦ - полностью согласен с теми, кто считает, что здесь наибольшее число, пусть и не академических, но вполне реальных инженерных проблем. Реакторы делать научились, а в комплексе ЗЯТЦ есть только более или менее продвинутые результаты НИР или НИОКР. Приоритет ПЯТЦ в проекте «Прорыв» очевиден. Это было и одной из основных причин переноса опытно-демонстрационного комплекса на площадку СХК: здесь сложился хороший коллектив специалистов, как по реакторам (исторически вторая площадка промышленных реакторов), так и по радиохимии.

4. Относительно новых (или хорошо забытых) идей в проекте «Прорыв»:

· для реакторов:
- равновесный режим работы активной зоны, исключающий необходимость держать запас по реактивности, потенциально достаточный для разгона его на мгновенных нейтронах;
- интегральная конструкция реактора, когда теплоноситель нельзя потерять ввиду отсутствия внешних петель первого контура, а охлаждение зоны может быть обеспечено естественным теплоотводом в окружающую среду, без активных систем (идея ещё Доллежаля по моноблоку для АПЛ, мигрирующая по разным проектным проработкам, но в базовой ЯЭ не реализованная);
- использование высококипящего жидкометаллического теплоносителя (идея не новая, но реализованная только в реакторах АПЛ);

· для ЗЯТЦ - радиационно-эквивалентный подход к обращению ядерных материалов в ТЦ, при котором не нарушается природное радиационное равновесие Земли и окончательно решается проблема ОЯТ;

· для нераспространения ЯО - отказ от использования в ЯЭ ключевых оружейных технологий: разделения изотопов (обогащения урана) и выделения чистых урана и плутония при переработке ОЯТ. Тем самым политическая (NPT) и контрольная (инспекции МАГАТЭ) составляющие дополняются технологическими мерами усиления режима нераспространения.

5. По поводу значимости проекта «Прорыв» и соотнесения его Атомным проектом 1:

· первый проект решал проблему не только «независимости», а самого существования СССР. Тем, кто не помнит или по возрасту не знает этого, следует вернуться к американскому плану «Dropshot»

· энергетика - основа развития любой экономики. Страны, зависимые от энергетического сырья других государств, или вынужденные закупать электроэнергию, зависимы настолько, что либо держат свой военный флот в регионах добычи органики (как, например, США, в Средиземном море), либо ищут политические компромиссы с поставщиками (как, например, Украина).

· устойчивое развитие страны (как, впрочем, и экономики мира) базируется только на стабильности энергетики и Стратегия развития атомной энергетики России в первой половине XXI века, одобренная Правительством РФ в 2000 г. показала, как можно решить эти задачи преимущественно на базе ядерной энергетики.

· решив в крайне ограниченные сроки и в условиях нищей экономики страны после разрушительной войны задачу «Атомного проекта 1», мы имеем все основания полагать, что можем обеспечить независимость страны и устойчивое развитие её экономики на основе потенциала ядерной энергетики, пусть и в удвоенные сроки, но и без необходимости собрать для этого все ресурсы страны, пренебречь её социальными задачами. Мне представляется, что в долговременном плане это даже более важная задача, чем создание ядерного оружия. Основоположники (Ферми, Курчатов), очевидно, придерживались такой же точки зрения, иначе не инициировали бы начальные работы по энергетическим реакторам уже в конце 40-х годов прошлого века.

6. Относительно того, на чём «сломались американцы и французы»:

· для американских специалистов очевидна необходимость замыкания топливного цикла и решения перечисленных в п. 1 моего ответа задач. И для неспециалистов тоже: постановка задач Биллом Гейтсом в проекте «TerraPower» исходит из части тех же предпосылок. Однако, работы по ЗЯТЦ были ввиду политического приоритета нераспространения запрещены ещё президентом Фордом, а затем запрет был поддержан и Дж. Картером. Тем не менее НИР по ЗЯТЦ американцы ведут и неплохо продвинулись и в части плотного топлива (металлического) и по разработке БР.

· французы вообще только притормозились, а саму концепцию ЗЯТЦ никогда не бросали. Сейчас рассматривается содержательная часть планов совместных с РФ работ по следующему поколению БР.

· Основное отличие: комплексная постановка задач, с возможностью их практического решения в опытно-демонстрационном объекте БР с ПЯТЦ уже к 2020 г. у тех и других отсутствует, что и создаёт реальные основы для восстановления лидерства в этой области, ранее, безусловно, принадлежавшего СССР, а за последние годы утраченного.

7. Теперь относительно дискуссии на площадке «PRoAtom»:

· многие годы наблюдая, а иногда и сотрудничая с этим изданием, считал его полезной площадкой общественных обсуждений, в дополнение к профессиональным кворумам НТС, семинаров, конференций или журналов типа «Атомной энергии»;

· даже эмоциональные, но выдержанные в рамках элементарного приличия, всплески-реакции на многие весьма интересные и затрагивающие существенные вопросы ядерного цеха, публикации известных специалистов, которых постоянно привлекала редакция, мне представляются нормальным и не осуждаемым явлением;

· неразборчивость редакции в последнее время и нежелание модерировать дискуссию, сохраняя её в общепринятых в цивилизованном обществе рамках, не может не вызвать чувства брезгливости и желания обходить дурно пахнущие сборища;

· в том случае, если редакция найдет в себе силы преодолеть явно обозначившуюся тенденцию - готов к продолжению научно-технической дискуссии: кстати, работы по проекту не засекречены.

В России ведутся работы по созданию революционного ядерного реактора, относящегося к четвертому поколению. Речь идет о реакторе «БРЕСТ», над которым сегодня работают предприятия, входящие в госкорпорацию «Росатом». Данный перспективный реактор создается в рамках реализации проекта «Прорыв». «БРЕСТ» - это проект реакторов на быстрых нейтронах со свинцовым теплоносителем, двухконтурной схемой отвода тепла к турбине, а также закритическими параметрами пара. Проект разрабатывается в нашей стране еще с конца 1980-х годов. Главным разработчиком данного реактора является НИКИЭТ имени Н. А. Доллежаля (научно-исследовательский и конструкторский институт энерготехники).

Сегодня атомные электростанции дают России 18% вырабатываемой электроэнергии. Очень большое значение атомная энергетика имеет в европейской части нашей страны, особенно на северо-западе, где на ее долю приходится 42% выработки электроэнергии. В настоящее время в России работает 10 АЭС, на которых эксплуатируется 34 энергоблока. На большинстве из них в качестве топлива используется низкообогащенный уран с содержанием изотопа урана-235 на уровне 2-5%. При этом топливо на АЭС расходуется не полностью, что ведет к образованию радиоактивных отходов.

В России набралось уже 18 тысяч тонн отработанного урана и с каждым годом эта цифра увеличивается на 670 тонн. А всего в мире насчитывается 345 тысяч тонн данных отходов, из которых 110 тысяч тонн приходятся на США. Проблему с переработкой данных отходов мог бы решить реактор нового типа, который действовал бы по замкнутому циклу. Создание такого реактора помогло бы справиться и с утечкой военных ядерных технологий. Такие реакторы можно было бы смело поставлять любым странам мира, так как на них в принципе невозможно было бы получить сырье, необходимое для создания ядерного . Но основным их плюсом стала бы безопасность. Такие реакторы можно было бы запустить даже на старом, отработанном ядерном топливе. По словам доктора физико-математических наук А. Крюкова, даже довольно грубые расчеты говорят нам о том, что накопленных за 60 лет работы атомной отрасли запасов отработанного урана хватит на несколько сотен лет генерации энергии.

Революционным проектом в данном направлении и являются реакторы «БРЕСТ». Данный реактор хорошо вписывается в контекст выступления Владимира Путина на «саммите тысячелетия» в ООН в сентябре 2000 года. В рамках своего доклада российский президент пообещал миру новую ядерную энергетику: безопасную, чистую, исключающую оружейное применение. С момента того выступления работы по воплощению проекта «Прорыв» в жизнь и создания реактора «БРЕСТ» существенно продвинулись вперед.

Общий вид реактора БРЕСТ-300

Изначально проектировалась установка «БРЕСТ», которая обеспечивала бы в составе энергоблока мощность 300 МВт, но позднее появился проект с увеличенной до 1200 МВт мощностью. При этом на данный момент времени разработчики сосредоточили все свои усилия на менее мощном реакторе БРЕСТ-ОД-300 (опытный демонстрационный) в связи с отработкой большого объема новых конструкторских решений и планах их проверки на относительно небольшом и дешевом в реализации проекте. Помимо этого выбранная мощность 300 МВт (электрическая) и 700 МВт (тепловая) - этом минимально необходимая мощность для получения коэффициента воспроизводства топлива в активной зоне реактора, равного единице.

В настоящее время проект «Прорыв» реализуется на площадке предприятия государственной корпорации «Росатом» Сибирского химического комбината (СХК) на территории закрытого территориального образования (ЗАТО) Северск (Томская область). Данный проект предполагает отработку технологий замыкания ядерного топливного цикла, которые будут востребованы в атомной энергетике будущего. Реализация данного проекта на практике предусматривает создание опытно-демонстрационного энергокомплекса в составе: БРЕСТ-ОД-300 - реактора на быстрых нейтронах со свинцовым жидкометаллическим теплоносителем с пристанционным ядерным топливным циклом и специального модуля фабрикации/рефабрикации топлива для данного реактора, а также модуля переработки его отработавшего топлива. Планируется запустить реактор БРЕСТ-ОД-300 в 2020 году.

Генеральным проектировщиком опытно-демонстрационного энергетического комплекса выступает санкт-петербургский ВНИПИЭТ. Реактор создается НИКИЭТ (Москва). Ранее сообщалось, что разработка реактора БРЕСТ оценивается в 17,7 миллиарда рублей, постройка модуля переработки отработавшего ядерного топлива - 19,6 миллиарда рублей, модуля фабрикации и пускового комплекса рефабрикации топлива - 26,6 миллиарда рублей. Главной задачей создаваемого энергетического комплекса должна стать отработка технологии эксплуатации нового реактора, производства нового топлива и технологии переработки отработавшего ядерного топлива. По этой причине решение о запуске реактора БРЕСТ-ОД-300 в энергетическом режиме с целью выработки электрической энергии будет приниматься только после завершения всех исследовательских работ по проекту.

Строительная площадка энергокомплекса БРЕСТ-300 находится в районе радиохимического завода Сибирского химического комбината. Работы на этой площадке начались в августе 2014 года. По словам гендиректора СХК Сергея Точилина, здесь уже была проведена вертикальная планировка с выемкой миллиона кубометров грунта, проложены кабели, смонтированы трубопроводы технической воды, выполнены иные строительные работы. В настоящее время подрядная организация «Ява-строй» и северский субподрядчик «Спецтеплохиммонтаж» продолжают комплекс работ, относящихся к подготовительному периоду. Сегодня на строительной площадке трудится 400 человек, с наращиванием темпов работ на объекте количество строителей вырастет до 600-700 человек. Государственные инвестиции в данный проект ориентировочно оцениваются в 100 миллиардов рублей, сообщает пресс-служба Сибирского химического комбината.

Опытно-демонстрационный энергетический комплекс в крупнейшем в нашей стране ЗАТО возводится поэтапно. Первым строится завод по выпуску нитридного топлива, ввод его в эксплуатацию запланирован на 2017-2018 год. Произведенное на данном заводе топливо в будущем поступит в опытно-демонстрационный реактор БРЕСТ-300, работы над постройкой которого начнутся в 2016 году, а завершатся в 2020 году, это станет завершением второго этапа реализации проекта. Третий этап работ предусматривает постройку еще одного завода - по переработке отработанного топлива. В полном объеме проект «Прорыв» должен будет заработать к 2023 году. Благодаря реализации данного амбициозного проекта, в городе Северске должно появиться порядка 1,5 тысячи новых рабочих мест. Непосредственно в постройке установки БРЕСТ-300 будет участвовать 6-8 тысяч рабочих.

Как рассказал глава проекта по созданию реактора БРЕСТ-300 Андрей Николаев, в состав опытно-демонстрационного энергетического комплекса в городе Северске войдет реакторная установка БРЕСТ-ОД-300 с пристанционным ядерным топливным циклом, а также комплекс по производству «атомного топлива будущего». Речь идет о нитридном топливе для реакторов на быстрых нейтронах. Предполагается, что именно на данном виде топливе, начиная с 20-х годов XXI века, будет функционировать вся атомная энергетика. Планируется, что опытный реактор БРЕСТ-300 станет первым на планете реактором на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем. Согласно проекту отработанное ядерное топливо в реакторе БРЕСТ-300 будет перерабатываться, после чего загружаться в реактор заново. Для стартовой загрузки реактора потребуется в общей сложности 28 тонн топлива. В настоящее время осуществляется анализ отработанного ядерного топлива из хранилищ Сибирского химического комбината - возможно, какое-то количество продуктов с плутониевым элементом получится использовать при выпуске топлива для опытного реактора БРЕСТ.

Реактор БРЕСТ-300 будет иметь ряд существенных преимуществ в области безопасности работы перед любым работающим в наши дни реактором. Данный реактор сможет самостоятельно заглушаться при отклонении любых параметров. Помимо этого, в реакторе на быстрых нейтронах используется топливо с меньшим запасом реактивности, разгон на мгновенных нейтронах и последующая вероятность взрыва попросту исключены. Свинец, в отличие от применяемого сегодня в качестве теплоносителя натрия, является пассивным, да и с точки зрения химической активности свинец безопаснее натрия. Плотное нитридное топливо легче переносит температурные режимы и механические дефекты, оно надежнее оксидного. Даже самые предельные аварии диверсионного характера с разрушением внешних барьеров (крышки корпуса, здания реактора и др.) не смогут привести к радиоактивным выбросам, которые потребовали бы проведения эвакуации населения и последующего длительного отчуждения земли, как это произошли при аварии на ЧАЭС в 1986 году.

К достоинствам реактора БРЕСТ относят:

Естественную радиационную безопасность при всевозможных авариях по внешним и внутренним причинам, включая диверсии, не требующую проведения эвакуации населения;

Долговременную (почти неограниченную во времени) обеспеченность топливом за счет эффективного использования природного урана;

Нераспространение на планете ядерного оружия за счет исключения наработки в ходе эксплуатации плутония оружейного качества и реализации пристанционной технологии сухой переработки топлива без разделения плутония и урана;

Экологичность производства энергии и последующей утилизации отходов за счет замкнутого топливного цикла с трансмутацией долгоживущих продуктов деления, трансмутацией и сжиганием в реакторе актиноидов, очисткой радиоактивных отходов от актиноидов, выдержкой и захоронением РАО без нарушения радиационного природного равновесия;

Экономическую конкурентоспособность, которая достигается за счет естественной безопасности АЭС и технологии реализованного топливного цикла, подпитки реактора только 238U, отказа от сложных инженерных систем безопасности, высоких параметров свинца, которые обеспечивают достижение закритических параметров паротурбинного контура и высокий КПД термодинамического цикла, сокращения стоимости строительства.

Проектное изображение комплекса БРЕСТ. 1 - реактор, 2-машзал с турбиной, 3 - модуль переработки ОЯТ, 4 - модуль фабрикации свежего топлива.

Сочетание мононитридного топлива, природных качеств свинцового теплоносителя, конструкторских решений активной зоны и контуров охлаждения, физических характеристик быстрого реактора выводит реактор БРЕСТ на качественно новый уровень естественной безопасности и позволяет обеспечить устойчивость без срабатывания активных средств аварийной защиты при очень тяжелых авариях, которые являются непреодолимыми для любого из существующих и проектируемых в мире реакторов:

Самоход всех имеющихся органов регулирования;
- отключение (заклинивание) всех насосов 1-го контура реактора;
- отключение (заклинивание) всех насосов 2-го контура реактора;
- разгерметизация корпуса ректора;
- разрыв трубок парогенератора или трубопроводов второго контура по любому сечению;
- наложение разнообразных аварий;
- неограниченное по времени расхолаживание при полном отключении питания.

Реализуемый «Росатомом» проект «Прорыв» направлен на создание новой технологической платформы атомной отрасли России с замкнутым топливным циклом и решением проблемы отработанного ядерного топлива и радиоактивных отходов (РАО). Результатом реализации данного амбициозного проекта должно стать создание конкурентоспособного продукта, который позволит обеспечить российским технологиям лидерство в мировой атомной энергетики, да и в целом в глобальной энергосистеме на ближайшие 30-50 лет.

Источники информации:
http://www.rosatom.ru
http://atomsib.ru
http://publicatom.ru/blog/atomsib/5854.html
http://sdelano-u-nas.livejournal.com/360656.html
Материалы из свободных источников

Ядерный реактор откроет новую страницу в энергетике Земли

Сорок три гектара территории, серые монолитные стены, обильно торчащая в небо арматура, краны и 600 рабочих. Через три года на этом месте, в закрытом городе Северске , в 25 километрах от Томска , начнёт работать первая в мире Perpetuum Mobile мощностью 300 мегаватт – атомная станция с замкнутым топливным циклом и расплавленным свинцом в качестве теплоносителя. Предприятие называется опытным, так как супертехнологии для него пока рассчитаны лишь на математических моделях. Однако, проверив их на действующем реакторе, наши атомщики получат референтную АЭС нового поколения, оторвавшись от конкурентов из Toshiba, Areva и прочих на десятилетия. Проект, который имеет говорящее название «Прорыв », обещает энергию без опасности и, главное, без добычи урана.

Скептики и мирный атом

Пара слов для тех, кто считает мирный атом пережитком. Потребность человечества в энергии удваивается каждые 20 лет. Сжигание нефти и угля приводит к ежегодному образованию порядка полумиллиарда тонн сернистого газа и окислов азота, то есть по 70 килограммов вредных веществ на каждого жителя земли. Использование АЭС эту проблему снимает. Мало того, запасы нефти ограничены, а энергоемкость одной тонны урана-235 примерно равна энергоемкости двух миллионов тонн бензина.

Важна также себестоимость. На ГЭС киловатт-час электроэнергии обходится в 10-25 копеек, но гидропотенциал в развитом мире практически исчерпан. На угольных или мазутных станциях – 22-40 копеек, но встают экологические проблемы. На промышленных ветряных и солнечных электростанциях – 35-150 копеек, дороговато, да и кто гарантирует постоянный ветер и отсутствие облаков. Себестоимость атомной энергии – 20-50 копеек, она стабильна, создает куда меньше экологических проблем, чем сжигание нефти и угля, ее потенциал безграничен.

Руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев

Наконец, российский мирный атом оказался почти вне конкуренции. В 2010 году, когда после 24-летнего «похолодания» многие страны снова захотели строить АЭС, наши реакторы оказались дешевле и не хуже японских, французских и американских прототипов. Более того, мы, в отличие от конкурентов, все эти годы строили АЭС – «Росатому» было что показать потенциальному заказчику.

Руководство госкорпорации грамотно распорядилось полученной форой. В итоге Westinghouse Electric в прошлом году обанкротилась. Toshiba, выкупившая ранее Westinghouse Electric, дышит на ладан. Финансовое состояние Areva тоже завидным не назовешь. Зато на «Атомэкспо-2016» приехали делегации 52 стран. У 20 из этих стран атомной энергетики до сих пор не было. Теперь они впервые появятся в Египте, Вьетнаме, Турции, Индонезии, Бангладеш – наши, российские АЭС.

Глубокий ад

Основная проблема атомной энергетики сегодня – топливо . Рентабельно извлекаемого урана на земле осталось 6,3 миллиона тонн. При учетах роста потребления хватит приблизительно на 50 лет. Стоимость – около 50 долларов за килограмм руды сегодня, но по мере вовлечения в добычу менее рентабельных месторождений она будет расти до 130 долларов за килограмм и выше. Есть, конечно, добытые запасы, и не маленькие, но и они не навсегда.

Уран добывается тяжело или очень тяжело . В породе урановой руды бывает порядка 0,1-1 процента, плюс-минус. Залегают руды на глубине около километра. Температуры на разработках выше 60 градусов по Цельсию. Добытую породу необходимо растворить в кислоте, чаще серной, чтобы из раствора выделить урановую руду. На некоторых месторождениях под землю сразу закачивают серную кислоту, чтобы потом забрать ее вместе с растворенным ураном. Однако есть урановые породы, которые в серной кислоте не растворяются…

Наконец, в очищенном уране только 0,72 процента необходимого изотопа – уран-235. Того самого, на котором работают атомные реакторы. Выделить его – отдельная головная боль. Уран превращают в газ (гексафторид урана) и пропускают через каскады центрифуг, вращающихся со скоростью порядка двух тысяч оборотов в секунду, где отделяют легкую фракцию от тяжелой. Отвал – уран-238, с остаточным содержанием урана-235 0,2-0,3 процента, в 50-е годы просто выбрасывали. Но потом стали хранить в виде твердого фторида урана в специальных контейнерах под открытым небом. За 60 лет на земле накопилось порядка двух миллионов тонн фторида урана-238 . Зачем его хранят? Затем, что уран-238 может стать топливом для быстрых атомных реакторов, с которыми до сих пор у атомщиков были сложные отношения.

Всего в мире было построено 11 промышленных реакторов на быстрых нейтронах: три в Германии, два во Франции, два в России, по одному в Казахстане, Японии, Великобритании и США. Один из них – SNR-300 в Германии так и не был запущен. Еще восемь остановлены. Работающих осталось два . Как вы думаете где? Правильно, на Белоярской АЭС.

С одной стороны, реакторы на быстрых нейтронах безопаснее привычных, тепловых. В них нет высокого давления, нет риска пароциркониевой реакции и так далее. С другой – напряженность нейтронных полей и температура в рабочей зоне выше, сталь, которая бы сохраняла свои свойства при том и другом параметрах, изготовить сложнее и дороже. К тому же, в качестве теплоносителя в быстром реакторе нельзя использовать воду. Остаются: ртуть, натрий и свинец. Ртуть отпадает по причине высокой коррозионной активности. Свинец надо умудриться поддерживать в расплавленном состоянии – температура плавления 327 градусов. Температура плавления натрия – 98 градусов, поэтому все быстрые реакторы до сих пор делали с натриевым теплоносителем. Но натрий слишком бурно реагирует с водой. Случись повреждение контура… Как и вышло на японском реакторе «Мондзю» в 1995 году. В общем, с быстрыми оказалось слишком сложно.

Схема энергоблока с реактором «Брест-300»

Не волнуйтесь, не застынет

– Не волнуйтесь, свинец в нашем реакторе «Брест-300» не только никогда не застынет, но никогда не охладится ниже температуры в 350 градусов, – рассказывает «Ленте.ру» руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев . – За это отвечают специальные схемы и системы. Это совершенно новый проект, не имеющий отношения к свинцово-висмутовым реакторам, которые стояли на подводных лодках. Здесь все разрабатывалось с учетом последних разработок, технологий, достижений. Это будет первый в мире быстрый реактор со свинцовым охлаждением . Недаром же он называется «Прорыв». Перед вами предприятие будущего – АЭС четвертого поколения с замкнутым топливным циклом.

По стройке полазить мне не дали – здесь гриф секретности. Фотографировать тоже не разрешили, поэтому снимки не мои. Их делал человек, которому заранее объяснили, с каких ракурсов можно запечатлевать объект, а с каких нельзя. Зато Андрей Николаев подробно объяснил, почему и в каком порядке строятся три завода «Прорыва» и как атомная станция может работать без урана .

Предприятие будет состоять из трех заводов : завод по производству топлива, собственно реактор и завод по переработке топлива. Завод по производству топлива будет фабриковать абсолютно нового состава твэлы, не имевшие аналога в мире. Это смешанное нитридное уран-плутониевое топливо – СНУП. Делящимся материалом в новом реакторе будет плутоний . А уран-238, сам не делящийся, будет попадать под облучение тепловыми нейтронами и превращаться в плутоний-239. То есть реактор «Брест-300» будет выделять тепло, электричество, а кроме того, для самого себя готовить топливо.

Двух зайцев одним выстрелом

В мире сегодня работают 449 мирных промышленных атомных реакторов и еще 60 строятся. Во время эксплуатации этих реакторов, прошлых и будущих, возникает плановая проблема – отработанные тепловыделяющие сборки. Сначала их складывают в специальные ванны, где они несколько лет «остывают». Затем, «остывшие» твэлы складывают в «сухие» хранилища, где они накапливаются в больших количествах. Мощностей, способных перерабатывать отработанные сборки в разы меньше, чем необходимо. Почему? Потому что это очень сложно и дорого.

В проекте «Прорыв» будет построен собственный завод по переработке топлива. Как вы уже догадываетесь, завод этот будет не только уничтожать отгоревшее топливо, но выдавать на выходе сырье для новых сборок . Старые твэлы будут растворять в кислоте, возможно серной, затем на заводе с помощью непростых химических технологий разделят раствор поэлементно. Ненужное кондиционируют и захоронят, нужное используют. Кроме сырья для нового топлива, предприятие будет добывать из старых сборок редчайшие изотопы тяжелых элементов, востребованные в медицине, науке и промышленности.

Кстати, мощность реактора в 300 мегаватт выбрана не случайно. При этой мощности он будет производить столько же плутония, сколько потребляет. Такой же реактор с большей мощностью произведет больше топлива, чем потребит. Так что один раз загруженный реактор «Брест» будет работать как заурядный Perpetuum Mobile. Потребуется только небольшая подпитка предприятия обедненным ураном. Ну, а уран-238, как я уже упоминал, накоплен атомной промышленностью в таком количестве, что хватит на вечность.

Макет будущей АЭС

Большая кастрюля

– Чтобы вы представили себе реактор, – продолжает Андрей Николаев. – Это кастрюля высотой 17 метров и диаметром 26 метров. В нее будут опущены тепловыделяющие сборки. Через нее будет циркулировать теплообменник – расплавленный свинец. Все оборудование от и до только российского производства. Это будет совершенно безопасный реактор с запасом реактивности меньше единицы. То есть в соответствии с законами физики ему просто не хватит реактивности для разгона. Масштабные аварии на нем не-воз-мож-ны. Никогда не потребуется эвакуация населения. Любой сбой, если он случится, не выйдет за границы здания предприятия. Даже выбросов в атмосферу в результате гипотетической аварии не будет.

В реакторе «Брест-300» будет внедрена автоматическая очистка теплоносителя. Теплоноситель нового реактора, то есть свинец, не потребует замены никогда. Таким образом исключается еще один проблемный отход традиционной ядерной энергетики – ЖРО.

Проблемы решаются по ходу

Авторы проекта «Брест-300» НИКИЭТ имени Доллежаля. Деньги выделяются в срок, строительство идет запланированными темпами, завод по фабрикации топлива начнет работать первым. Пуск реактора назначен на 2024 год . Затем будут достраивать модуль переработки топлива. Параллельно со строительством продолжаются работы по НИОКР. По результатам этих работ в строительство периодически вносятся изменения, поэтому окончательная финальная временная точка не называется.

У проекта «Брест» в академических кругах есть недоброжелатели. Это понятно, проект победил на конкурсе, в котором участвовали еще несколько именитых институтов. Критики называют технологии, используемые в «Бресте», – недоработанными. В частности, ставят под вопрос использование расплава свинца в качестве теплоносителя и так далее и тому подобное. Мы не будем влезать в детали, они слишком сложны и неоднозначны. С другой стороны – почему мы должны не доверять нашим атомщикам? Все проекты, которые СССР, а вслед за ним Россия делали в атомной отрасли, оказывались на шаг впереди западных и восточных аналогов.

И даже в области балета…Строящийся под Томском ядерный реактор откроет новую страницу в энергетике Земли

Сорок три гектара территории, серые монолитные стены, обильно торчащая в небо арматура, краны и 600 рабочих. Через три года на этом месте, в закрытом городе Северске, в 25 километрах от Томска, начнет работать первая в мире Perpetuum Mobile мощностью 300 мегаватт — атомная станция с замкнутым топливным циклом и расплавленным свинцом в качестве теплоносителя. Предприятие называется опытным, так как супертехнологии для него пока рассчитаны лишь на математических моделях. Однако, проверив их на действующем реакторе, наши атомщики получат референтную АЭС нового поколения, оторвавшись от конкурентов из Toshiba, Areva и прочих на десятилетия. Проект, который имеет говорящее название «Прорыв», обещает энергию без опасности и, главное, без добычи урана.

Скептики и мирный атом

Пара слов для тех, кто считает мирный атом пережитком. Потребность человечества в энергии удваивается каждые 20 лет. Сжигание нефти и угля приводит к ежегодному образованию порядка полумиллиарда тонн сернистого газа и окислов азота, то есть по 70 килограммов вредных веществ на каждого жителя земли. Использование АЭС эту проблему снимает. Мало того, запасы нефти ограничены, а энергоемкость одной тонны урана-235 примерно равна энергоемкости двух миллионов тонн бензина.

Важна также себестоимость. На ГЭС киловатт-час электроэнергии обходится в 10-25 копеек, но гидропотенциал в развитом мире практически исчерпан. На угольных или мазутных станциях — 22-40 копеек, но встают экологические проблемы. На промышленных ветряных и солнечных электростанциях — 35-150 копеек, дороговато, да и кто гарантирует постоянный ветер и отсутствие облаков. Себестоимость атомной энергии — 20-50 копеек, она стабильна, создает куда меньше экологических проблем, чем сжигание нефти и угля, ее потенциал безграничен.


Наконец, российский мирный атом оказался почти вне конкуренции. В 2010 году, когда после 24-летнего «похолодания» многие страны снова захотели строить АЭС, наши реакторы оказались дешевле и не хуже японских, французских и американских прототипов. Более того, мы, в отличие от конкурентов, все эти годы строили АЭС — «Росатому» было что показать потенциальному заказчику.

Руководство госкорпорации грамотно распорядилось полученной форой. В итоге Westinghouse Electric в прошлом году обанкротилась. Toshiba, выкупившая ранее Westinghouse Electric, дышит на ладан. Финансовое состояние Areva тоже завидным не назовешь. Зато на «Атомэкспо-2016» приехали делегации 52 стран. У 20 из этих стран атомной энергетики до сих пор не было. Теперь они впервые появятся в Египте, Вьетнаме, Турции, Индонезии, Бангладеш — наши, российские АЭС.

Глубокий ад

Основная проблема атомной энергетики сегодня — топливо. Рентабельно извлекаемого урана на земле осталось 6,3 миллиона тонн. При учетах роста потребления хватит приблизительно на 50 лет. Стоимость — около 50 долларов за килограмм руды сегодня, но по мере вовлечения в добычу менее рентабельных месторождений она будет расти до 130 долларов за килограмм и выше. Есть, конечно, добытые запасы, и не маленькие, но и они не навсегда.

Уран добывается тяжело или очень тяжело. В породе урановой руды бывает порядка 0,1-1 процента, плюс-минус. Залегают руды на глубине около километра. Температуры на разработках выше 60 градусов по Цельсию. Добытую породу необходимо растворить в кислоте, чаще серной, чтобы из раствора выделить урановую руду. На некоторых месторождениях под землю сразу закачивают серную кислоту, чтобы потом забрать ее вместе с растворенным ураном. Однако есть урановые породы, которые в серной кислоте не растворяются…

Наконец, в очищенном уране только 0,72 процента необходимого изотопа — уран-235. Того самого, на котором работают атомные реакторы. Выделить его — отдельная головная боль. Уран превращают в газ (гексафторид урана) и пропускают через каскады центрифуг, вращающихся со скоростью порядка двух тысяч оборотов в секунду, где отделяют легкую фракцию от тяжелой. Отвал — уран-238, с остаточным содержанием урана-235 0,2-0,3 процента, в 50-е годы просто выбрасывали. Но потом стали хранить в виде твердого фторида урана в специальных контейнерах под открытым небом. За 60 лет на земле накопилось порядка двух миллионов тонн фторида урана-238. Зачем его хранят? Затем, что уран-238 может стать топливом для быстрых атомных реакторов, с которыми до сих пор у атомщиков были сложные отношения.

Всего в мире было построено 11 промышленных реакторов на быстрых нейтронах: три в Германии, два во Франции, два в России, по одному в Казахстане, Японии, Великобритании и США. Один из них — SNR-300 в Германии так и не был запущен. Еще восемь остановлены. Работающих осталось два. Как вы думаете где? Правильно, на Белоярской АЭС.

С одной стороны, реакторы на быстрых нейтронах безопаснее привычных, тепловых. В них нет высокого давления, нет риска пароциркониевой реакции и так далее. С другой — напряженность нейтронных полей и температура в рабочей зоне выше, сталь, которая бы сохраняла свои свойства при том и другом параметрах, изготовить сложнее и дороже. К тому же, в качестве теплоносителя в быстром реакторе нельзя использовать воду. Остаются: ртуть, натрий и свинец. Ртуть отпадает по причине высокой коррозионной активности. Свинец надо умудриться поддерживать в расплавленном состоянии — температура плавления 327 градусов. Температура плавления натрия — 98 градусов, поэтому все быстрые реакторы до сих пор делали с натриевым теплоносителем. Но натрий слишком бурно реагирует с водой. Случись повреждение контура… Как и вышло на японском реакторе «Мондзю» в 1995 году. В общем, с быстрыми оказалось слишком сложно.


Схема энергоблока с реактором «Брест-300» Изображение: proryv2020.ru

Не волнуйтесь, не застынет

Не волнуйтесь, свинец в нашем реакторе «Брест-300» не только никогда не застынет, но никогда не охладится ниже температуры в 350 градусов, — рассказывает «Ленте.ру» руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев. - За это отвечают специальные схемы и системы. Это совершенно новый проект, не имеющий отношения к свинцово-висмутовым реакторам, которые стояли на подводных лодках. Здесь все разрабатывалось с учетом последних разработок, технологий, достижений. Это будет первый в мире быстрый реактор со свинцовым охлаждением. Недаром же он называется «Прорыв». Перед вами предприятие будущего — АЭС четвертого поколения с замкнутым топливным циклом.

По стройке полазить мне не дали — здесь гриф секретности. Фотографировать тоже не разрешили, поэтому снимки не мои. Их делал человек, которому заранее объяснили, с каких ракурсов можно запечатлевать объект, а с каких нельзя. Зато Андрей Николаев подробно объяснил, почему и в каком порядке строятся три завода «Прорыва» и как атомная станция может работать без урана.

Предприятие будет состоять из трех заводов: завод по производству топлива, собственно реактор и завод по переработке топлива. Завод по производству топлива будет фабриковать абсолютно нового состава твэлы, не имевшие аналога в мире. Это смешанное нитридное уран-плутониевое топливо — СНУП. Делящимся материалом в новом реакторе будет плутоний. А уран-238, сам не делящийся, будет попадать под облучение тепловыми нейтронами и превращаться в плутоний-239. То есть реактор «Брест-300» будет выделять тепло, электричество, а кроме того, для самого себя готовить топливо.

Двух зайцев одним выстрелом

В мире сегодня работают 449 мирных промышленных атомных реакторов и еще 60 строятся. Во время эксплуатации этих реакторов, прошлых и будущих, возникает плановая проблема — отработанные тепловыделяющие сборки. Сначала их складывают в специальные ванны, где они несколько лет «остывают». Затем, «остывшие» твэлы складывают в «сухие» хранилища, где они накапливаются в больших количествах. Мощностей, способных перерабатывать отработанные сборки в разы меньше, чем необходимо. Почему? Потому что это очень сложно и дорого.

В проекте «Прорыв» будет построен собственный завод по переработке топлива. Как вы уже догадываетесь, завод этот будет не только уничтожать отгоревшее топливо, но выдавать на выходе сырье для новых сборок. Старые твэлы будут растворять в кислоте, возможно серной, затем на заводе с помощью непростых химических технологий разделят раствор поэлементно. Ненужное кондиционируют и захоронят, нужное используют. Кроме сырья для нового топлива, предприятие будет добывать из старых сборок редчайшие изотопы тяжелых элементов, востребованные в медицине, науке и промышленности.

Кстати, мощность реактора в 300 мегаватт выбрана не случайно. При этой мощности он будет производить столько же плутония, сколько потребляет. Такой же реактор с большей мощностью произведет больше топлива, чем потребит. Так что один раз загруженный реактор «Брест» будет работать как заурядный Perpetuum Mobile. Потребуется только небольшая подпитка предприятия обедненным ураном. Ну, а уран-238, как я уже упоминал, накоплен атомной промышленностью в таком количестве, что хватит на вечность.


Макет будущей АЭС Изображение: proryv2020.ru ½

Большая кастрюля

Чтобы вы представили себе реактор, — продолжает Андрей Николаев. - Это кастрюля высотой 17 метров и диаметром 26 метров. В нее будут опущены тепловыделяющие сборки. Через нее будет циркулировать теплообменник — расплавленный свинец. Все оборудование от и до только российского производства. Это будет совершенно безопасный реактор с запасом реактивности меньше единицы. То есть в соответствии с законами физики ему просто не хватит реактивности для разгона. Масштабные аварии на нем не-воз-мож-ны. Никогда не потребуется эвакуация населения. Любой сбой, если он случится, не выйдет за границы здания предприятия. Даже выбросов в атмосферу в результате гипотетической аварии не будет.

В реакторе «Брест-300» будет внедрена автоматическая очистка теплоносителя. Теплоноситель нового реактора, то есть свинец, не потребует замены никогда. Таким образом исключается еще один проблемный отход традиционной ядерной энергетики — ЖРО.

Проблемы решаются по ходу

Авторы проекта «Брест-300» НИКИЭТ имени Доллежаля. Деньги выделяются в срок, строительство идет запланированными темпами, завод по фабрикации топлива начнет работать первым. Пуск реактора назначен на 2024 год. Затем будут достраивать модуль переработки топлива. Параллельно со строительством продолжаются работы по НИОКР. По результатам этих работ в строительство периодически вносятся изменения, поэтому окончательная финальная временная точка не называется.

У проекта «Брест» в академических кругах есть недоброжелатели. Это понятно, проект победил на конкурсе, в котором участвовали еще несколько именитых институтов. Критики называют технологии, используемые в «Бресте», — недоработанными. В частности, ставят под вопрос использование расплава свинца в качестве теплоносителя и так далее и тому подобное. Мы не будем влезать в детали, они слишком сложны и неоднозначны. С другой стороны — почему мы должны не доверять нашим атомщикам? Все проекты, которые СССР, а вслед за ним Россия делали в атомной отрасли, оказывались на шаг впереди западных и восточных аналогов. Так какие у нас основания полагать, что на этот раз что-то пойдет иначе? Мне кажется, стоит просто порадоваться за «Росатом» и ТВЭЛ и в то же время за себя, ведь это же наша корпорация.

Ссоры