Материал о назревшей необходимости получения биогаза. Как получить биогаз из навоза: обзор базовых принципов и устройства установки по производству

Экология потребления. Усадьба: Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт. Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

О преимуществах использования биотехнологий

Технология получения биогаза из различных природных источников не нова. Исследования в этой области начались еще в конце 18 века и успешно развивались в 19 столетии. В Советском Союзе первая биоэнергетическая установка была создана в сороковых годах прошлого века.

Технология переработки навоза в биогаз позволяет уменьшить количество вредных выбросов метана в атмосферу и получить дополнительный источник тепловой энергии

Биотехнологии давно применяются во многих странах, но именно сегодня они приобретают особое значение. Вследствие ухудшения экологической обстановки на планете и высокой стоимости энергоносителей, многие устремляют свои взоры в сторону альтернативных источников энергии и тепла.

Безусловно, навоз является очень ценным удобрением, и если в хозяйстве имеется две коровы, то и проблем с его применением не возникает. Другое дело, когда речь идет о фермерских хозяйствах с большим и средним поголовьем, где в год образуются тонны зловонного и гниющего биологического материала.

Чтобы навоз превратился в качественное удобрение, нужны площади с определенным температурным режимом, а это лишние расходы. Поэтому многие фермеры складируют его, где придется, а затем вывозят на поля.

При несоблюдении условий хранения из навоза улетучиваются до 40% азота и основная часть фосфора, что значительно ухудшает его качественные показатели. Кроме того, в атмосферу выделяется газ метан, оказывающий негативное влияние на экологическую обстановку планеты.

В зависимости от объема сырья, образующегося в сутки, следует подбирать габариты установки и степень ее автоматизации

Современные биотехнологии позволяют не только нейтрализовать вредное воздействие метана на экологию, но и заставить его служить на благо человека, извлекая при этом немалую экономическую выгоду. В результате переработки навоза образуется биогаз, из которого затем можно получить тысячи кВт энергии, а отходы производства представляют собой очень ценное анаэробное удобрение.

Что представляет собой биогаз

Биогаз – это летучее вещество без цвета и какого-либо запаха, в котором содержится до 70% метана. По своим качественным показателям он приближается к традиционному виду топлива – природному газу. Отличается хорошей теплотворной способностью, 1м3 биогаза выделяет столько тепла, сколько получается при сгорании полутора килограмм угля.

Образованию биогаза мы обязаны анаэробным бактериям, которые активно трудятся над разложением органического сырья, в качестве которого используются навоз сельскохозяйственных животных, птичий помет, отходы любых растений.

В самостоятельном производстве биогаза может использоваться птичий помет и продукты жизнедеятельности мелкого и крупного домашнего скота. Сырье может применяться в чистом виде и в форме смеси с включением травы, листвы, старой бумаги

Для активизации процесса необходимо создать благоприятные условия для жизнедеятельности бактерий. Они должны быть схожи с теми, в которых микроорганизмы развиваются в естественном резервуаре – в желудке животных, где тепло и отсутствует кислород. Собственно это и есть два основных условия, способствующих чудесному превращению гниющей навозной массы в экологически чистое топливо и ценные удобрения.

Механизм образования газа из органического сырья

Для получения биогаза нужен герметичный реактор без доступа воздуха, где будет происходить процесс брожения навоза и разложения его на составляющие:

  • Метан (до 70%).
  • Углекислый газ (примерно 30%).
  • Другие газообразные вещества (1-2%).

Образовавшиеся газы поднимаются кверху емкости, откуда их затем выкачивают, а вниз оседает остаточный продукт – высококачественное органическое удобрение, сохранившее в результате обработки все ценные вещества, имеющиеся в навозе – азот и фосфор, и потерявшее значительную часть патогенных микроорганизмов.

Реактор для получения биогаза должен иметь полностью герметичную конструкцию, в которой отсутствует кислород, в противном случае процесс разложения навоза будет проходить крайне медленно

Второе важное условие для эффективного разложения навоза и образования биогаза – соблюдение температурного режима. Бактерии, принимающие участие в процессе, активизируются при температуре от +30 градусов. Причем в навозе содержится два вида бактерий:

  • Мезофильные. Их жизнедеятельность происходит при температуре +30 – +40 градусов;
  • Термофильные. Для их размножения необходимо соблюсти температурный режим +50 (+60) градусов.

Время переработки сырья в установках первого типа зависит от состава смеси и составляет от 12 до 30 суток. При этом 1 литр полезной площади реактора дает 2 л биотоплива. При использовании установок второго типа время выработки конечного продукта сокращается до трех дней, а количество биогаза возрастает до 4,5 л.

Эффективность термофильных установок видна невооруженным глазом, однако и цена их обслуживания очень высока, поэтому прежде чем выбрать тот или иной способ получения биогаза, необходимо очень тщательно все просчитать (кликните для увеличения)

Несмотря на то, что эффективность термофильных установок в десятки раз выше, применяются они гораздо реже, поскольку поддержание высоких температур в реакторе связано с большими расходами. Обслуживание и содержание установок мезофильного типа дешевле, поэтому большинство фермерских хозяйств для получения биогаза используют именно их.

Биогаз по критериям энергетического потенциала немногим уступает привычному газовому топливу. Однако в его составе есть сернокислые испарения, наличие которых следует учесть при выборе материалов для сооружения установки

Расчеты эффективности применения биогаза

Оценить все преимущества использования альтернативного биотоплива, помогут несложные расчеты. Одна корова весом 500 кг производит в сутки примерно 35-40 кг навоза. Этого количества хватит для получения около 1.5 м3 биогаза, из которого в свою очередь можно выработать 3 кВт/ч электроэнергии.

Используя данные из таблицы, нетрудно рассчитать, сколько м3 биогаза можно получить на выходе в соответствии с имеющимся в фермерском хозяйстве поголовьем скота

Для получения биотоплива можно использовать как один вид органического сырья, так и смеси из нескольких компонентов, имеющих влажность 85-90%. Важно, чтобы они не содержали посторонние химические примеси, отрицательно влияющие на процесс переработки.

Самый простой рецепт смеси придумал еще в 2000 году один русский мужик из Липецкой области, который построил своими руками простейшую установку для получения биогаза. Он смешивал 1500 кг коровьего навоза с 3500 кг отходов различных растений, добавлял воду (примерно 65% от веса всех ингредиентов) и разогревал смесь до 35 градусов.

Через две недели бесплатное топливо готово. Эта небольшая установка вырабатывала 40 м3 газа в день, что вполне хватало для обогрева дома и хозпостроек в течение полугода.

Варианты изготовления установок для получения биотоплива

После проведения расчетов необходимо определиться, как изготовить установку, чтобы получить биогаз в соответствии с потребностями своего хозяйства. Если поголовье скота небольшое, то подойдет простейшая установка, которую нетрудно изготовить из подручных средств своими руками.

Крупным фермерским хозяйствам, у которых есть постоянный источник большого количества сырья, целесообразно построить промышленную автоматизированную биогазовую систему. В этом случае вряд ли получится обойтись без привлечения специалистов, которые разработают проект и смонтируют установку на профессиональном уровне.

На схеме наглядно показано, как работает промышленный автоматизированный комплекс по получению биогаза. Строительство таких масштабов можно организовать сразу нескольким фермерским хозяйствам, расположенным поблизости

Сегодня существуют десятки компаний, которые могут предложить множество вариантов: от готовых решений, до разработки индивидуального проекта. Для удешевления строительства можно скооперироваться с соседними хозяйствами (если такие имеются поблизости) и построить одну на всех установку для получения биогаза.

Следует учесть, что для постройки даже небольшой установки необходимо оформить соответствующие документы, сделать технологическую схему, план размещения оборудования и вентиляции (если оборудование устанавливается в помещении), пройти процедуры согласования с СЭС, пожарной и газовой инспекцией.

Конструктивные особенности биогазовой системы

Полноценная биогазовая установка представляет собой сложную систему, состоящую из:

  1. Биореактора, где протекает процесс разложения навоза;
  2. Автоматизированной системы подачи органических отходов;
  3. Устройства для перемешивания биомассы;
  4. Оборудования для поддержания оптимального температурного режима;
  5. Газгольдера – емкости для хранения газа;
  6. Приемника отработанных твердых отходов.

Все вышеперечисленные элементы устанавливаются в промышленные установки, работающие в автоматическом режиме. Бытовые реакторы, как правило, имеют более упрощенную конструкцию.

На схеме представлены основные составляющие автоматизированной биогазовой системы. Объем реактора зависит от суточного поступления органического сырья. Для полноценного функционирования установки реактор должен быть заполнен на две трети объема

Принцип работы и устройство установки для производства биогаза

Основным элементом системы является биореактор. Существует несколько вариантов его исполнения, главное – обеспечить герметичность конструкции и исключить попадание кислорода. Он может быть выполнен в виде металлической емкости различной формы (чаще цилиндрической), расположенной на поверхности. Нередко для этих целей используются 50-ти кубовые пустые топливные цистерны.

Можно приобрести готовые емкости разборной конструкции. Их преимущество – возможность быстрой разборки, и при необходимости – перевозки в другое место. Промышленные поверхностные установки целесообразно применять в крупных хозяйствах, где есть постоянный приток большого количества органического сырья.

Для небольших подворий больше подходит вариант подземного размещения резервуара. Поземный бункер строится из кирпича или бетона. Можно закопать в землю готовые емкости, например, бочки из металла, нержавеющей стали или ПВХ. Возможно также их поверхностное размещение на улице или в специально отведенном помещении с хорошей вентиляцией.

Для изготовления установки по производству биогаза можно приобрести готовые емкости из ПВХ и установить их в помещении, оборудованном системой вентиляции

Независимо от того, где и как размещается реактор, он снабжается бункером для загрузки навоза. Прежде чем загрузить сырье, оно должно пройти предварительную подготовку: его измельчают на фракции не больше 0,7 мм и разбавляют водой. В идеале влажность субстрата должна быть около 90%.

Автоматизированные установки промышленного типа оснащаются системой подачи сырья, включающей приемник, в котором смесь доводится до необходимого увлажнения, трубопровод для подачи воды и насосную установку для перекачки массы в биореактор.

В домашних установках для подготовки субстрата используются отдельные емкости, где отходы измельчаются и перемешиваются с водой. Затем масса загружается в приемный отсек. В реакторах, расположенных под землей, бункер для приема субстрата выводится наружу, подготовленная смесь самотеком по трубопроводу поступает в камеру для брожения.

Если реактор размещен на земле или в помещении, входная труба с приемным устройством могут располагаться в нижней боковой части емкости. Возможно также трубу вывести в верхнюю часть, а на ее горловину надеть раструб. В этом случае биомассу придется подавать при помощи насоса.

В биореакторе также необходимо предусмотреть выходное отверстие, которое делают практически на дне емкости с противоположной стороны от входного бункера. При подземном размещении выходная труба устанавливается косо вверх и ведет в приемник для отходов, по форме напоминающий ящик прямоугольной формы. Его верхний край дожжен находиться ниже уровня входного отверстия.

Входная и выходные трубы располагаются косо вверх на разных сторонах емкости, при этом компенсирующая емкость, в которую поступают отходы, должна быть ниже приемного бункера

Процесс протекает следующим образом: входной бункер принимает новую партию субстрата, которая стекает в реактор, одновременно такое же количество отработанного шлама по трубе поднимается в приемник для отходов, откуда он в дальнейшем вычерпывается и используется в качестве высококачественного биоудобрения.

Хранение биогаза осуществляется в газгольдере. Чаще всего он находится прямо на крыше реактора и имеет форму купола или конуса. Он изготавливается из кровельного железа, а затем, чтобы предотвратить коррозийные процессы, окрашивается несколькими слоями масляной краски. В промышленных установках, рассчитанных на получение большого количества газа, газгольдер нередко выполняется в виде отдельно стоящего резервуара, соединенного с реактором трубопроводом.

Газ, полученный в результате брожения, не подходит для использования, поскольку в нем содержится большое количество водяных паров, и в таком виде он не будет гореть. Чтобы очистить его от фракций воды, газ пропускают через гидрозатвор. Для этого из газгольдера выводится труба, по которой биогаз поступает в емкость с водой, а уже оттуда он по пластиковой или металлической трубе подается потребителям.

Схема установки, расположенной под землей. Входное и выходное отверстия должны располагаться на противоположных сторонах емкости. Над реактором находится водяной затвор, через который для осушения пропускается полученный газ

В некоторых случаях для хранения газа используются специальные мешки-газгольдеры, изготовленные из поливинилхлорида. Мешки помещаются рядом с установкой и постепенно заполняются газом. По мере наполнения, эластичный материал раздувается, и объем мешков увеличивается, позволяя при необходимости временно сохранить большее количество конечного продукта.

Условия эффективной работы биореактора

Для эффективной работы установки и интенсивного выделения биогаза необходимо равномерное брожение органического субстрата. Смесь должна находиться в постоянном движении. В противном случае на ней образуется корка, процесс разложения замедляется, в итоге газа получается меньше, чем изначально рассчитано.

Чтобы обеспечить активное перемешивание биомассы, в верхней или боковой части типового реактора устанавливаются мешалки погружного или наклонного вида, оборудованные электроприводом. В установках кустарного вида перемешивание производится механическим способом при помощи устройства, напоминающего бытовой миксер. Им можно управлять вручную или снабдить электроприводом.

При вертикальном расположении реактора рукоятка мешалки выводится в верхнюю часть установки. Если емкость установлена горизонтально, шнек также располагается в горизонтальной плоскости, и ручка находится сбоку биореактора

Одним из самых главных условий для получения биогаза является поддержание в реакторе необходимого температурного режима. Обогрев может осуществляться несколькими способами. В стационарных установках применяются автоматизированные системы подогрева, которые включаются в работу при падении температуры ниже заданного уровня, и отключаются при наборе необходимого температурного режима.

Для обогрева можно использовать газовые котлы, осуществлять прямой нагрев электрическими отопительными приборами, или встроить в основание емкости нагревательный элемент. Чтобы уменьшить потери тепла рекомендуется вокруг реактора соорудить небольшой каркас со слоем стекловаты или укрыть установку теплоизоляцией. Хорошими теплоизоляционными свойствами обладает пенополистирол.

Чтобы обустроить систему обогрева биомассы, можно провести трубопровод от домового отопления, которое питается от реактора

Как определить нужный объем реактора

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземной установки по производству биогаза

Теперь поговорим о простейшей установке, позволяющей получить биогаз в домашних условиях с наименьшими затратами. Рассмотрим строительство подземной установки. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном. С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанного шлама.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер имеет купольную или конусную форму. Она изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Видео о получении биогаза из навоза

Как происходит строительство подземного реактора, вы можете посмотреть в видеосюжете:

Установка по получению биогаза из навоза позволит существенно сэкономить на оплате тепла и электроэнергии, и пустить на благое дело органический материал, который в избытке имеется в каждом фермерском хозяйстве. Прежде чем начать строительство, необходимо все тщательно просчитать и подготовить.

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам. опубликовано

Вопрос получения метана интересен тем владельцам частных хозяйств, кто занимается разведением птицы или свиней, а также держит крупнорогатый скот. Как правило, в таких хозяйствах вырабатывается значительное количество органических отходов жизнедеятельности животных, они-то и могут принести немалую пользу, став источником дешевого топлива. Цель данного материала – рассказать, как добыть биогаз в домашних условиях, используя эти самые отходы.

Общие сведения о биогазе

Получаемый из различного навоза и птичьего помета домашний биогаз большей частью состоит из метана. Там его от 50 до 80% в зависимости от того, чьи отходы жизнедеятельности использовались для производства. Того самого метана, что горит в наших плитах и котлах, и за который мы платим порой немалые деньги согласно показаниям счетчика.

Чтобы дать представление о количестве горючего, что теоретически можно добыть при содержании животных дома или на даче, представим таблицу с данными о выходе биогаза и содержании в нем чистого метана:

Как можно понять из таблицы, для эффективного производства газа из коровьего навоза и силосных отходов понадобится довольно большое количество сырья. Выгоднее добывать горючее из навоза свиней и помета индюков.

Оставшаяся доля веществ (25-45%), из которых состоит домашний биогаз, приходится на углекислый газ (до 43%) и сероводород (1%). Также в составе горючего присутствует азот, аммиак и кислород, но в незначительных количествах. Кстати, именно благодаря выделению сероводорода и аммиака навозная куча издает такой знакомый «приятный» запах. Что касается энергетического содержания, то 1 м3 метана теоретически может выделить при сжигании до 25 МДж (6.95 кВт) тепловой энергии. Удельная теплота сгорания биогаза зависит от доли метана в его составе.

Для справки. На практике проверено, что для обогрева утепленного дома, находящегося в средней полосе, потребно около 45 м3 биологического горючего на 1 м2 площади за отопительный сезон.

Природой устроено так, что биогаз из навоза образуется самопроизвольно и независимо от того, хотим его получать или нет. Навозная куча перегнивает в течение года – полутора, просто находясь на открытом воздухе и даже при отрицательной температуре. Все это время она выделяет биогаз, но только в небольших количествах, поскольку процесс растянут во времени. Причиной служат сотни видов микроорганизмов, находящихся в экскрементах животных. То есть, для начала газовыделения ничего не нужно, оно будет происходить самостоятельно. А вот для оптимизации процесса и его ускорения потребуется специальное оборудование, о чем пойдет речь далее.

Технология получения биогаза

Суть эффективного производства - ускорение природного процесса разложения органического сырья. Для этого находящимся в нем бактериям необходимо создать наилучшие условия для размножения и переработки отходов. И первое условие – поместить сырье в закрытую емкость – реактор, иначе - генератор биогаза. Отходы измельчаются и перемешиваются в реакторе с расчетным количеством чистой воды до получения исходного субстрата.

Примечание. Чистая вода необходима для того, чтобы в субстрат не попали вещества, пагубно влияющие на жизнедеятельность бактерий. Как следствие, процесс брожения может сильно замедлиться.

Промышленная установка по производству биогаза оборудована подогревом субстрата, средствами перемешивания и контроля над кислотностью среды. Перемешивание выполняется с целью удалить с поверхности твердую корку, что возникает во время брожения и мешает выделению биогаза. Длительность технологического процесса – не менее 15 дней, за это время степень разложения достигает 25%. Считается, что максимальный выход горючего происходит до 33% разложения биомассы.

Технологией предусматривается ежедневное обновление субстрата, так обеспечивается интенсивное получение газа из навоза, в промышленных установках оно исчисляется сотнями кубических метров в день. Часть отработанной массы в размере порядка 5% от общего объема удаляется из реактора, а на ее место загружается столько же свежего биологического сырья. Отработанный материал используется в качестве органического удобрения полей.

Схема биогазовой установки

Получая биогаз в домашних условиях, невозможно создать столь благоприятные условия для микроорганизмов, как в промышленном производстве. И в первую очередь это утверждение касается организации подогрева генератора. Как известно, это требует затрат энергии, что ведет к существенному удорожанию себестоимости горючего. Контролировать соблюдение слабощелочной среды, присущей процессу брожения, вполне возможно. Только как ее корректировать в случае отклонений? Снова затраты.

Владельцам частных хозяйств, желающим добывать биогаз своими руками, рекомендуется изготовить реактор простой конструкции из доступных материалов, а потом его модернизировать в силу своих возможностей. Что надо сделать:

  • герметично закрывающуюся емкость объемом не менее 1 м3. Разные баки и бочки малых размеров тоже подойдут, но горючего из них будет выделяться мало из-за недостаточного количества сырья. Такие объемы производства вас не устроят;
  • организовывая производство биогаза в домашних условиях, вы вряд ли станете делать подогрев емкости, а вот утеплить ее нужно обязательно. Другой вариант – заглубить реактор в землю, выполнив тепловую изоляцию верхней части;
  • установить в реакторе ручную мешалку любой конструкции, выведя рукоятку через верхнюю крышку. Узел прохода ручки должен быть герметичным;
  • предусмотреть патрубки для подачи и выгрузки субстрата, а также для отбора биогаза.

Ниже показана схема биогазовой установки, размещенной ниже уровня земли:

1 – генератор горючего (емкость из металла, пластика или бетона); 2 — бункер для заливки субстрата; 3 – технический люк; 4 – сосуд, играющий роль водяного затвора; 5 – патрубок выгрузки отработанных отходов; 6 – патрубок отбора биогаза.

Как получить биогаз в домашних условиях?

Операция первая – измельчение отходов до фракции, чей размер не более 10 мм. Так гораздо легче приготовить субстрат, да и бактериям будет проще перерабатывать сырье. Получившаяся масса тщательно перемешивается с водой, ее количество – около 0.7 л на 1 кг органики. Как уже сказано выше, воду следует использовать только чистую. Затем субстратом заполняется биогазовая установка, сделанная своими руками, после чего реактор герметично закрывается.

Несколько раз в течении дня надо наведываться к емкости, чтобы перемешать содержимое. На 5-й день можно проверять наличие газа, и буде он появится, периодически откачивать его компрессором в баллон. Если этого вовремя не делать, то давление внутри реактора возрастет и брожение замедлится, а то и остановится вовсе. Спустя 15 дней надо производить выгрузку части субстрата и добавление такого же количество нового. Подробности можно узнать, просмотрев видео:

Заключение

Вполне вероятно, что простейшая установка для получения биогаза не обеспечит все ваши потребности. Но, учитывая нынешнюю стоимость энергоресурсов, это уже будет немалым подспорьем в домашнем хозяйстве, ведь за исходное сырье вам платить не приходится. Со временем, плотно занимаясь производством, вы сможете уловить все особенности и провести необходимое усовершенствование установки.

Поскольку технологии в настоящее время стремительно шагнули вперед, сырьем для получения биогаза могут стать самые различные отходы органического происхождения. Показатели выхода биогаза из различных видов органического сырья приведены ниже.

Таблица 1. Выход биогаза из органического сырья

Категория сырья Выход биогаза (м 3) из 1 тонны базового сырья
Коровий навоз 39-51
Навоз КРС, перемешанный с соломой 70
Свиной навоз 51-87
Овечий навоз 70
Птичий помет 46-93
Жировая ткань 1290
Отходы с мясобойни 240-510
ТБО 180-200
Фекалии и сточные воды 70
Послеспиртовая барда 45-95
Биологические отходы производства сахара 115
Силос 210-410
Картофельная ботва 280-490
Свекольный жом 29-41
Свекольная ботва 75-200
Овощные отходы 330-500
Зерно 390-490
Трава 290-490
Глицерин 390-595
Пивная дробина 39-59
Отходы, полученные в процессе уборки ржи 165
Лен и конопля 360
Овсяная солома 310
Клевер 430-490
Молочная сыворотка 50
Кукурузный силос 250
Мука, хлеб 539
Рыбные отходы 300

Навоз КРС

Во всем мире к числу наиболее популярных относят , предусматривающие использование в качестве базового сырья коровьего навоза. Содержание одной головы КРС позволяет обеспечить в год 6,6–35 т жидкого навоза. Этот объем сырья может быть переработан в 257–1785 м 3 биогаза. По параметру теплоты сгорания указанные показатели соответствуют: 193–1339 кубометрам природного газа, 157–1089 кг бензина, 185–1285 кг мазута, 380–2642 кг дров.

Одним из ключевых преимуществ использования коровьего навоза в целях выработки биогаза является наличие в ЖКТ крупного рогатого скота колоний бактерий, вырабатывающих метан. Это означает, что отсутствует необходимость дополнительного внесения микроорганизмов в субстрат, а следовательно, потребность в дополнительных инвестициях. Вместе с тем однородная структура навоза делает возможным применение данного типа сырья в устройствах непрерывного цикла. Производство биогаза будет еще более эффективным при добавлении в ферментируемую биомассу мочи КРС.

Навоз свиней и овец

В отличие от КРС, животные этих групп содержатся в помещениях без бетонных полов, поэтому процессы производства биогаза здесь несколько осложняются. Использование навоза свиней и овец в устройствах непрерывного цикла невозможно, допускается лишь его дозированная загрузка. Вместе с сырьевой массой данного типа в биореакторы нередко попадают растительные отходы, что может существенно увеличить период ее обработки.

Птичий помет

В целях эффективного применения птичьего помета для получения биогаза рекомендуется оснащать птичьи клетки насестами, поскольку это позволит обеспечить сбор помета в больших объемах. Для получения значительных объемов биогаза следует перемешивать птичий помет с коровьей навозной жижей, что исключит излишнее выделение аммиака из субстрата. Особенностью применения птичьего помета при производстве биогаза является необходимость введения 2-стадийной технологии с использованием реактора гидролиза. Это требуется в целях осуществления контроля над уровнем кислотности, в противном случае бактерии в субстрате могут погибнуть.

Фекалии

Для эффективной переработки фекалий требуется минимизировать объем воды, приходящийся на один санитарный прибор: единовременно он не может превышать 1 л.

С помощью научных исследований последних лет удалось установить, что в биогаз , в случае использования для его производства фекалий, наряду с ключевыми элементами (в частности, метаном) переходит множество опасных соединений, способствующих загрязнению окружающей среды. Например, во время метанового брожения подобного сырья при высоких температурных режимах на станциях биоочистки стоков практически во всех пробах газовой фазы обнаружено около 90 µg/м 3 мышьяка, 80 µg/м 3 сурьмы, по 10 µg/м 3 ртути, 500 µg/м 3 теллура, 900 µg/м 3 олова, 700 µg/м 3 свинца. Упомянутые элементы представлены тетра- и диметилированными соединениями, свойственными процессам автолиза. Выявленные показатели серьезно превышают ПДК указанных элементов, что свидетельствует о необходимости более обстоятельного подхода к проблеме переработки фекалий в биогаз.

Энергетические растительные культуры

Подавляющее большинство зеленых растений обеспечивает исключительно высокий выход биогаза. Множество европейских биогазовых установок функционируют на кукурузном силосе. Это вполне оправданно, поскольку кукурузный силос, полученный с 1 га, позволяет выработать 7800–9100 м 3 биогаза, что соответствует: 5850–6825 м3 природного газа, 4758–5551 кг бензина, 5616–6552 кг мазута, 11544–13468 кг дров.

Около 290–490 м 3 биогаза дает тонна различных трав, при этом особенно высоким выходом отличается клевер: 430–490м 3 . Тонна качественного сырья картофельной ботвы также способна обеспечить до 490 м 3 , тонна свекольной ботвы – от 75 до 200 м 3 , тонна отходов, полученных в процессе уборки ржи, - 165 м 3 , тонна льна и конопли – 360 м 3 , тонна овсяной соломы - 310 м 3 .

Следует отметить, что в случае целенаправленного выращивания энергетических культур для производства биогаза существует необходимость инвестирования денежных средств в их посев и уборку. Этим подобные культуры существенно отличаются от иных источников сырья для биореакторов. Необходимости в удобрении подобных культур нет. Что касается отходов овощеводства и производства зерновых культур, то их переработка в биогаз имеет исключительно высокую экономическую эффективность.

«Свалочный газ»

Из тонны сухих ТБО может быть получено до 200 м 3 биогаза, свыше 50% объема которого составляет метан. По активности выбросов метана «свалочные полигоны» намного превосходят любые другие источники. Использование ТБО в производстве биогаза не только позволит получить существенный экономический эффект, но и сократит поступление загрязняющих соединений в атмосферу.

Качественные характеристики сырья для получения биогаза

Показатели, характеризующие выход биогаза и концентрацию в нем метана, зависят в том числе от влажности базового сырья. Рекомендуется поддерживать ее на уровне 91% в летний период и 86% в зимний.

Осуществить получение максимальных объемов биогаза из ферментируемых масс можно, обеспечив достаточно высокую активность микроорганизмов. Реализовать эту задачу можно лишь при необходимой вязкости субстрата. Процессы метанового брожения замедляются, если в сырье присутствуют сухие, крупные и твердые элементы. Кроме того, при наличии таких элементов наблюдается образование корки, приводящей к расслоению субстрата и прекращению выхода биогаза. Чтобы исключить подобные явления, перед загрузкой сырьевой массы в биореакторы ее измельчают и осторожно перемешивают.

Оптимальными значениями pH сырья являются параметры, находящиеся в диапазоне 6,6–8,5. Практическая реализация увеличения рН до необходимого уровня обеспечивается посредством дозированного введения в субстрат состава, изготовленного из измельченного мрамора.

В целях обеспечения максимального выхода биогаза большинство различных типов сырья допускается смешивать с другими видами посредством кавитационной переработки субстрата. При этом достигаются оптимальные соотношения углекислого газа и азота: в обрабатываемой биомассе они должны обеспечиваться в пропорции 16 к 10.

Таким образом, при выборе сырья для биогазовых установок имеет смысл уделить его качественным характеристикам самое пристальное внимание.

http :// www .74 rif . ru / biogaz - konst . html Информационный центр
поддержки предпринимательства
в мире топливных и автомобильных технологий

Выход биогаза и содержание метана

Выход биогаза обычно подсчитывается в литрах или кубических метрах на килограмм сухого вещества, содержащегося в навозе. В таблице показаны значения выхода биогаза на килограмм сухого вещества для разных видов сырья после 10-20 дней ферментации при мезофильной температуре.

Для определения выхода биогаза из свежего сырья с помощью таблицы сначала нужно определить влажность свежего сырья. Для этого можно взять килограмм свежего навоза, высушить его и взвесить сухой остаток. Влажность навоза в процентах можно подсчитать по формуле: (1 - вес высушенного навоза)х100%.


Тип сырья

Выход газа (м 3 на килограмм сухого вещества)

Содержание метана (%)

А. навоз животных

Навоз КРС

0,250 - 0,340

65

Свиной навоз

0,340 - 0,580

65 - 70

Птичий помет

0,310 - 0,620

60

Конский навоз

0,200 - 0,300

56 - 60

Овечий навоз

0,300 - 620

70

Б. Отходы хозяйства

Сточные воды, фекалии

0,310 - 0,740

70

Овощные отходы

0,330 - 0,500

50-70

Картофельная ботва

0,280 - 0,490

60 - 75

Свекольная ботва

0,400 - 0,500

85

С. Растительные сухие отходы

Пшеничная солома

0,200 - 0,300

50 - 60

Солома ржи

0,200 - 0,300

59

Ячменная солома

0,250 - 0,300

59

Овсяная солома

0,290 - 0,310

59

Кукурузная солома

0,380 - 0,460

59

Лен

0,360

59

Конопля

0,360

59

Свекольный жом

0,165

Листья подсолнечника

0,300

59

Клевер

0,430 - 0,490

D. Другое

Трава

0,280 - 0,630

70

Листва деревьев

0,210 - 0,290

58

Выход биогаза и содержание в нем метана при использовании разных типов сырья

Подсчитать, какое количество свежего навоза с определенной влажностью будет соответствовать 1 кг сухого вещества, можно следующим образом: от 100 отнимаем значение влажности навоза в процентах, а затем делим 100 на это значение:

100: (100% - влажность в %).


Пример 1.

Если вы определили, что влажность используемого в качестве сырья навоза КРС равна 85%. то 1 килограмм сухого вещества будет соответствовать 100:(100-85) = около 6,6 килограмма свежего навоза. Значит, с 6.6 килограмма свежего навоза мы получаем 0,250 - 0,320 м 3 биогаза: а с 1 килограмма свежего навоза КРС можно получить в 6.6 раза меньше: 0.037 - 0,048 м 3 биогаза.

Пример 2.

Вы определили влажность свиного навоза - 80%, значит, 1 килограмм сухого вещества будет равен 5 килограммам свежего свиного навоза.
Из таблицы мы знаем, что 1 килограмм сухого вещества или 5 кг свежего свиного навоза выделяет 0,340 - 0,580 м 3 биогаза. Значит, 1 килограмм свежего свиного навоза выделяет 0,068-0,116 м 3 биогаза.

Примерные значения

Если известен вес суточного свежего навоза, то суточный выход биогаза будет примерно следующим:

1 тонна навоза КРС - 40-50 м 3 биогаза;
1 тонна свиного навоза - 70-80 м 3 биогаза;
1 тонна птичьего помета - 60 -70 м 3 биогаза. Нужно помнить, что примерные значения приводятся для готового сырья влажностью 85% - 92%.

Вес биогаза

Объемный вес биогаза составляет 1,2 кг на 1 м 3 , поэтому при подсчете количества получаемых удобрений необходимо вычитать его из количества перерабатываемого сырья.

Для среднесуточной загрузки 55 кг сырья и дневном выходе биогаза 2,2 - 2.7 м 3 на голову КРС масса сырья уменьшится на 4 - 5% в процессе переработки его в биогазовой установке.

Оптимизация процесса получения биогаза

Кислотообразующие и метанобразующие бактерии встречаются в природе повсеместно, в частности в экскрементах животных. В пищеварительной системе крупного рогатого скота содержится полный набор микроорганизмов, необходимых для сбраживания навоза. Поэтому навоз КРС часто применяют в качестве сырья, загружаемого в новый реактор. Для начала процесса сбраживания достаточно обеспечить следующие условия:

Поддержка анаэробных условий в реакторе

Жизнедеятельность метанообразующих бактерий возможна только при отсутствии кислорода в реакторе биогазовой установки, поэтому нужно следить за герметичностью реактора и отсутствием доступа в реактор кислорода.

Соблюдение температурного режима

Поддержка оптимальной температуры является одним из важнейших факторов процесса сбраживания. В природных условиях образование биогаза происходит при температурах от 0°С до 97°С, но с учетом оптимизации процесса переработки органических отходов для получения биогаза и биоудобрений выделяют три температурных режима:

Психофильный температурный режим определяется температурами до 20 - 25°С,
мезофильный температурный режим определяется температурами от 25°С до 40°С и
термофильный температурный режим определяется температурами свыше 40°С.

Степень бактериологического производства метана увеличивается с увеличением температуры. Но, так как количество свободного аммиака тоже увеличивается с ростом температуры, процесс сбраживания может замедлиться. Биогазовые установки без подогрева реактора демонстрируют удовлетворительную производительность только при среднегодовой температуре около 20°С или выше или когда средняя дневная температура достигает по меньшей мере 18°С. При средних температурах в 20-28°С производство газа непропорционально увеличивается. Если же температура биомассы менее 15°С, выход газа будет так низок, что биогазовая установка без теплоизоляции и подогрева перестает быть экономически выгодной.

Сведения относительно оптимального температурного режима различны для разных видов сырья. Для биогазовых установок работающих на смешанном навозе КРС, свиней и птиц, оптимальной температурой для мезофильного температурного режима является 34 - 37°С, а для термофильного 52 - 54°С. Психофильный температурный режим соблюдается в установках без подогрева, в которых отсутствует контроль за температурой. Наиболее интенсивное выделение биогаза в психофильном режиме происходит при 23°С.

Процесс биометанации очень чувствителен к изменениям температуры. Степень этой чувствительности в свою очередь зависит от температурных рамок, в которых происходит переработка сырья. При процессе ферментации могут быть допустимы изменения температуры в пределах:


психофильный температурный режим: ± 2°С в час;
мезофильный температурный режим: ± 1°С в час;
термофильный температурный режим: ± 0,5°С в час.

На практике более распространены два температурных режима, это термофильный и мезофильный. У каждого из них есть свои достоинства и недостатки. Преимущества термофильного процесса сбраживания это повышенная скорость разложения сырья, и следовательно более высокий выход биогаза, а также практически полное уничтожение болезнетворных бактерий, содержащихся в сырье. К недостаткам термофильного разложения можно отнести; большое количество энергии, требуемое на подогрев сырья в реакторе, чувствительность процесса сбраживания к минимальным изменениям температуры и несколько более низкое качество получаемых биоудобрений .

При мезофильном режиме сбраживания сохраняется высокий аминокислотный состав биоудобрений, но обеззараживание сырья не такое полное, как при термофильном режиме.

Доступность питательных веществ

Для роста и жизнедеятельности метановых бактерий (с помощью которых производится биогаз) необходимо наличие в сырье органических и минеральных питательных веществ. В дополнение к углероду и водороду создание биоудобрений требует достаточного количество азота, серы, фосфора, калия, кальция и магния и некоторого количества микроэлементов - железа, марганца, молибдена, цинка, кобальта, селена, вольфрама, никеля и других. Обычное органическое сырье - навоз животных - содержит достаточное количество вышеупомянутых элементов.

Время сбраживания

Оптимальное время сбраживания зависит от дозы загрузки реактора и температуры процесса сбраживания. Если время сбраживания выбрано слишком коротким, то при выгрузке сброженной биомассы бактерии из реактора вымываются быстрее, чем могут размножаться, и процесс ферментации практически останавливается. Слишком продолжительное выдерживание сырья в реакторе не отвечает задачам получения наибольшего количества биогаза и биоудобрений за определенный промежуток времени.

При определении оптимальной продолжительности сбраживания пользуются термином "время оборота реактора". Время оборота реактора - это то время, в течение которого свежее сырье, загруженное в реактор, перерабатывается, и его выгружают из реактора.

Для систем с непрерывной загрузкой среднее время сбраживания определяется отношением объема реактора к ежедневному объему загружаемого сырья. На практике время оборота реактора выбирают в зависимости от температуры сбраживания и состава сырья в следующих интервалах:

Психофильный температурный режим: от 30 до 40 и более суток;
мезофильный температурный режим: от 10 до 20 суток;
термофильный температурный режим: от 5 до 10 суток.

Суточная доза загрузки сырья определяется временем оборота реактора и увеличивается (как и выход биогаза) с увеличением температуры в реакторе. Если время оборота реактора составляет 10 суток: то суточная доля загрузки будет составлять 1/10 от общего объема загружаемого сырья. Если время оборота реактора составляет 20 суток, то суточная доля загрузки будет составлять 1/20 от общего объема загружаемого сырья. Для установок, работающих в термофильном режиме, доля загрузки может составить до 1/5 от общего объема загрузки реактора.

Выбор времени сбраживания зависит также и от типа перерабатываемого сырья. Для следующих видов сырья, перерабатываемого в условиях мезофильного температурного режима, время, за которое выделяется наибольшая часть биогаза, равно примерно:

Жидкий навоз КРС: 10 -15 дней;


жидкий свиной навоз: 9 -12 дней;
жидкий куриный помет: 10-15 дней;
навоз, смешанный с растительными отходами: 40-80 дней.

Кислотно-щелочной баланс

Метанопродуцирующие бактерии лучше всего приспособлены для существования в нейтральных или слегка щелочных условиях. В процессе метанового брожения второй этап производства биогаза является фазой активного действия кислотных бактерий. В это время уровень рН снижается, то есть среда становится более кислой.

Однако при нормальном ходе процесса жизнедеятельность разных групп бактерий в реакторе проходит одинаково эффективно и кислоты перерабатываются метановыми бактериями. Оптимальное значение pH колеблется в зависимости от сырья от 6,5 да 8,5.

Измерить уровень кислотно-щелочного баланса можно с помощью лакмусовой бумаги. Значения кислотно-щелочного баланса будут соответствовать цвету: приобретаемому бумагой при её погружении в сбраживаемое сырье.

Содержание углерода и азота

Одним из наиболее важных факторов, влияющих на метановое брожение (выделение биогаза), является соотношение углерода и азота в перерабатываемом сырье. Если соотношение C/N чрезмерно велико, то недостаток азота будет служить фактором, ограничивающим процесс метанового брожения. Если же это соотношение слишком мало, то образуется такое большое количество аммиака, что он становится токсичным для бактерий.

Микроорганизмы нуждаются как в азоте, так и в углероде для ассимиляции в их клеточную структуру. Различные эксперименты показали: выход биогаза наибольший при уровне соотношения углерода и азота от 10 до 20, где оптимум колеблется в зависимости от типа сырья. Для достижения высокой продукции биогаза практикуется смешивание сырья для достижения оптимального соотношения C/N.


Биоферментируемый материал

Азот N(%)

Соотношение углерода и азота C/N

А. Навоз животных

КРС

1,7 - 1,8

16,6 - 25

Куриный

3,7 - 6,3

7,3 - 9,65

Конский

2,3

25

Свиной

3,8

6,2 - 12,5

Овечий

3,8

33

B. Растительные сухие отходы

Кукурузные початки

1,2

56,6

Солома зерновых

1

49,9

Пшеничная солома

0,5

100 - 150

Кукурузная солома

0,8

50

Овсяная солома

1,1

50

Соя

1,3

33

Люцерна

2,8

16,6 - 17

Свекольный жом

0,3 - 0,4

140 - 150

С. Другое

Трава

4

12

Опилки

0,1

200 - 500

Опавшая листва

1

50

Выбор влажности сырья

Беспрепятственный обмен веществ в сырье является предпосылкой для высокой активности бактерий. Это возможно только в том случае, когда вязкость сырья допускает свободное движение бактерий и газовых пузырьков между жидкостью и содержащимися в ней твердыми веществами. В отходах сельскохозяйственного производства имеются разные твердые частицы.

Твердые частицы, например, песок, глина и др. обуславливают образование осадка. Более легкие материалы поднимаются на поверхность сырья и образуют корку. Это приводит к уменьшению ообразования биогаза. Поэтому рекомендуется тщательно измельчать перед загрузкой в реактор растительные остатки - солому: и др. , и стремиться к отсутствию твердых веществ в сырье.



Виды животных

Среднесут. кол-во навоза, кг/сутки

Влажность навоза (%)

Среднесут. кол-тво экскрементов (кг/сутки)

Влажность экскрементов (%)

КРС

36

65

55

86

Свиньи

4

65

5,1

86

Птица

0,16

75

0,17

75

Количество и влажность навоза и экскрементов на одно животное


Влажность сырья, загружаемого в реактор установки, должна быть не менее 85% в зимнее время и 92% в летнее время года. Для достижения правильной влажности сырья навоз обычно разбавляют горячей водой в количестве, определяемом по формуле: OB = Нx((В 2 - В 1):(100 - В 2)), где Н-количество загружаемого навоза. В 1 - первоначальная влажность навоза, В 2 - необходимая влажность сырья, ОВ - количество воды в литрах. В таблице приводится необходимое количество воды для разбавления 100 кг навоза до 85% и 92% влажности.


Количество воды для достижения необходимой влажности на 100 кг навоза

Регулярное перемешивание

Для эффективной работы биогазовой установки и поддерживания стабильности процесса сбраживания сырья внутри реактора необходимо периодическое перемешивание. Главными целями перемешивания являются:

Высвобождение произведенного биогаза;
перемешивание свежего субстрата и популяции бактерий (прививка):
предотвращение формирования корки и осадка;
предотвращение участков разной температуры внутри реактора;
обеспечение равномерного распределения популяции бактерий:
предотвращение формирования пустот и скоплений, уменьшающих эффективную площадь реактора.

При выборе подходящего способа и метода перемешивания нужно учитывать, что процесс сбраживания представляет собой симбиоз между различными штаммами бактерий, то есть бактерии одного вида могут питать другой вид. Когда сообщество разбивается, процесс ферментации будет непродуктивным до того, как образуется новое сообщество бактерий. Поэтому слишком частое или продолжительное и интенсивное перемешивание вредно. Рекомендуется медленно перемешивать сырье через каждые 4-6 часов.

Ингибиторы процесса

Сбраживаемая органическая масса не должна содержать веществ (антибиотики, растворители и т. п.), отрицательно влияющих на жизнедеятельность микроорганизмов, они замедляют а иногда и прекращают процесс выделения биогаза. Не способствуют "работе" микроорганизмов и некоторые неорганические вещества, поэтому нельзя, например, использовать для разбавления навоза воду, оставшуюся после стирки белья синтетическими моющими средствами.

На каждый из различных типов бактерий, участвующих в трех стадиях метанообразования, эти параметры влияют по-разному. Существует также тесная взаимозависимость между параметрами (например, выбор времени сбраживания зависит от температурного режима), поэтому сложно определить точное влияние каждого фактора на количество образующегося биогаза.

Технология производства биогаза . Современные животноводческие комплексы обеспечивают получение высоких производственных показателей. Применяемые технологические решения позволяют полностью соблюдать требования действующих санитарно-гигиенических норм в помещениях самих комплексов.

Однако большие количества жидкого навоза, сконцентрированные в одном месте, создают значительные проблемы для экологии прилегающих к комплексу территорий. Например, свежий свиной навоз и помёт относятся к отходам, имеющим 3-й класс опасности. Экологические вопросы находятся на контроле надзирающих органов, требования законодательства по этим вопросам постоянно ужесточаются.

Биокомплекс предлагает комплексное решение по вопросам утилизации жидкого навоза, которое включает ускоренную переработку в современных биогазовых установках (БГУ). В процессе переработки, в ускоренном режиме протекают естественные процессы разложения органики с выделением газа включающего: метан, СО2, серу, и т.д. Только получаемый газ не выделяется в атмосферу, вызывая парниковый эффект, а направляется в специальные газогенераторные (когенерационные) установки, которые вырабатывают электрическую и тепловую энергию.

Биогаз - горючий газ , образующийся при анаэробном метановом сбраживании биомассы и состоящий преимущественно из метана (55-75%), двуокиси углерода (25-45%) и примесей сероводорода, аммиака, оксидов азота и других (менее 1%).

Разложение биомассы происходит в результате химико-физических процессов и симбиотической жизнедеятельности 3-х основных групп бактерий, при этом продукты метаболизма одних групп бактерий являются продуктами питания других групп, в определённой последовательности.

Первая группа - гидролизные бактерии, вторая – кислотообразующие, третья - метанобразующие.

В качестве сырья для производства биогаза могут использоваться как органические агропромышленные или бытовые отходы, так и растительное сырьё.

Наиболее распространёнными видами отходов АПК, используемыми для производства биогаза, являются:

  • навоз свиней и КРС, помёт птицы;
  • остатки с кормового стола комплексов КРС;
  • ботва овощных культур;
  • некондиционный урожай злаковых и овощных культур, сахарной свёклы, кукурузы;
  • жом и меласса;
  • мучка, дробина, мелкое зерно, зародыши;
  • дробина пивная, солодовые ростки, белковый отстой;
  • отходы крахмало-паточного производства;
  • выжимки фруктовые и овощные;
  • сыворотка;
  • и пр.

Источник сырья

Вид сырья

Количество сырья в год, м3 (тн.)

Количество биогаза, м3

1 дойная корова Бесподстилочный жидкий навоз
1 свинья на откорме Бесподстилочный жидкий навоз
1 бычок на откорме Подстилочный твёрдый навоз
1 лошадь Подстилочный твёрдый навоз
100 кур Сухой помёт
1 га пашни Свежий силос кукурузы
1 га пашни Сахарная свёкла
1 га пашни Свежий силос из зерновых культур
1 га пашни Свежий силос из травы

Количество субстратов (видов отходов), используемых для производства биогаза в пределах одной биогазовой установки (БГУ), может варьироваться от одного до десяти и более.

Биогазовые проекты в агропромышленном секторе могут быть созданы по одному из следующих вариантов:

  • производство биогаза из отходов отдельного предприятия (например, навоза животноводческой фермы, жома сахарного завода, барды спиртового завода);
  • производство биогаза на базе отходов разных предприятий, с привязкой проекта к отдельному предприятию либо отдельно расположенной централизованной БГУ;
  • производство биогаза с преимущественным использованием энергетических растений на отдельно расположенных БГУ.

Наиболее распространённым способом энергетического использования биогаза является сжигание в газопоршневых двигателях в составе мини-ТЭЦ, с производством электроэнергии и тепла.

Существуют различные варианты технологических схем биогазовых станций — в зависимости от типов и количества видов применяемых субстратов. Использование предварительной подготовки, в ряде случаев, позволяет добиться увеличения скорости и степени распада сырья в биореакторах, а, следовательно, увеличения общего выхода биогаза. В случае применения нескольких субстратов, отличающихся свойствами, например, жидких и твёрдых отходов, их накопление, предварительная подготовка (разделение на фракции, измельчение, подогрев, гомогенизация, биохимическая или биологическая обработка, и пр.) проводится отдельно, после чего они либо смешиваются перед подачей в биореакторы, либо подаются раздельными потоками.

Основными структурными элементами схемы типичной биогазовой установки являются:

  • система приёма и предварительной подготовки субстратов;
  • система транспортировки субстратов в пределах установки;
  • биореакторы (ферментеры) с системой перемешивания;
  • система обогрева биореакторов;
  • система отвода и очистки биогаза от примесей сероводорода и влаги;
  • накопительные ёмкости сброженной массы и биогаза;
  • система программного контроля и автоматизации технологических процессов.

Технологические схемы БГУ бывают различными в зависимости от вида и числа перерабатываемых субстратов, от вида и качества конечных целевых продуктов, от того или иного используемого «ноу-хау» компании поставщика технологического решения, и ряда других факторов. Наиболее распространёнными на сегодняшний день являются схемы с одноступенчатым сбраживанием нескольких видов субстратов, одним из которых обычно является навоз.

С развитием биогазовых технологий применяемые технические решения усложняются в сторону двухступенчатых схем, что в ряде случаев обосновано технологической необходимостью эффективной переработки отдельных видов субстратов и повышением общей эффективности использования рабочего объема биореакторов.

Особенностью производства биогаза является то, что он может вырабатываться метановыми бактериями только из абсолютно сухих органических веществ. Поэтому задачей первого этапа производства, является создание смеси субстрата, который имеет повышенное содержание органических веществ, и в то же время может перекачиваться насосами. Это субстрат с содержанием сухих веществ 10-12%. Решение достигается путём выделения излишней влаги с помощью шнековых сепараторов.

Жидкий навоз поступает из производственных помещений в резервуар, гомогенизируется с помощью погружной мешалки, и погружным насосом подаётся в цех разделения на шнековые сепараторы. Жидкая фракция накапливается в отдельном резервуаре. Твёрдая фракция загружается в устройство подачи твёрдого сырья.

В соответствии с графиком загрузки субстрата в ферментёр, по разработанной программе периодически включается насос, подающий жидкую фракцию в ферментёр и одновременно включается загрузчик твёрдого сырья. В качестве варианта, жидкая фракция может подаваться в загрузчик твёрдого сырья, имеющего функцию перемешивания, и затем уже готовая смесь подаётся в ферментёр по разработанной программе загрузки.. Включения бывают непродолжительными. Это сделано, чтобы не допустить излишнего поступления органического субстрата в ферментёр, поскольку это может нарушить баланс веществ и вызовет дестабилизацию процесса в ферментёре. Одновременно включаются также насосы, перекачивающие дигестат из ферментёра в дображиватель и из дображивателя в накопитель дигестата (лагуну), чтобы не допустить переполнения ферментёра и дображивателя.

Находящиеся в ферментёре и дображивателе массы дигестата, перемешиваются для обеспечения равномерного распределения бактерий по всему объёму ёмкостей. Для перемешивания используются тихоходные мешалки специальной конструкции.

В процессе нахождения субстрата в ферментёре, бактериями выделяется до 80% всего биогаза, вырабатываемого БГУ. В дображивателе выделяется оставшаяся часть биогаза.

Важную роль в обеспечении стабильного количества выделяемого биогаза играет температура жидкости внутри ферментёра и дображивателя. Как правило, процесс протекает в мезофильном режиме с температурой 41-43ᴼС. Поддержание стабильной температуры достигается применением специальных трубчатых нагревателей внутри ферментёров и дображивателей, а также надёжной теплоизоляцией стен и трубопроводов. Биогаз, выходящий из дигестата, имеет повышенное содержание серы. Очистка биогаза от серы производится с помощью специальных бактерий, заселяющих поверхность утеплителя, уложенного на деревянный балочный свод внутри ферментёров и дображивателей.

Накопление биогаза осуществляется в газгольдере, который образуется между поверхностью дигестата и эластичным высокопрочным материалом, покрывающим ферментёр и дображиватель сверху. Материал имеет способность сильно растягиваться (без уменьшения прочности), что накоплении биогаза значительно увеличивает ёмкость газгольдера. Для предохранения переполнения газгольдера и разрыва материала, имеется предохранительный клапан.

Далее биогаз поступает в когенерационную установку. Когенерационная установка (КГУ) является блоком, в котором осуществляется выработка электрической энергии генераторами, привод которых осуществляют газопоршневые двигатели, работающие на биогазе. Когенераторы работающие на биогазе, имеют конструктивные отличия от обычных газогенераторных двигателей, поскольку биогаз является сильно обеднённым топливом. Вырабатываемая генераторами электрическая энергия, обеспечивает питание электрооборудования самой БГУ, а все сверх этого отпускается близлежащим потребителям. Энергия жидкости, идущей на охлаждение когенераторов и является вырабатываемой тепловой энергией за минусом потерь в бойлерных устройствах. Вырабатываемая тепловая энергия, частично идёт на обогрев ферментёров и дображивателей, а оставшаяся часть – также направляется в близ лежащим потребителям. поступает в

Можно установить дополнительное оборудование для очистки биогаза до уровня природного газа, однако это дорогостоящее оборудование и его применяют, только если целью БГУ является не производство тепловой и электрической энергии, а производство топлива для газопоршневых двигателей. Апробированными и наиболее часто применяемыми технологиями очистки биогаза являются водная абсорбция, адсорбция на носителе под давлением, химическое осаждение и мембранное разделение.

Энергетическая эффективность работы БГУ во многом зависит как от выбранной технологии, материалов и конструкции основных сооружений, так и от климатических условий в районе их расположения. Среднее потребление тепловой энергии на подогрев биореакторов в умеренном климатическом поясе равно 15-30% от энергии, вырабатываемой когенераторами (брутто).

Общая энергетическая эффективность биогазового комплекса с ТЭЦ на биогазе составляет в среднем 75-80%. В ситуации, когда всё тепло, получаемое от когенерационной станции при производстве электроэнергии невозможно потребить (распространённая ситуация из-за отсутствия внешних потребителей тепла), оно отводится в атмосферу. В таком случае, энергетическая эффективность биогазовой ТЭС составляет лишь 35% от общей энергии биогаза.

Основные показатели работы биогазовых установок могут существенно различаться, что во многом определяется применяемыми субстратами, принятым технологическим регламентом, эксплуатационной практикой, выполняемыми задачами каждой отдельной установки.

Процесс переработки навоза составляет не более 40 дней. Получаемый в результате переработки дигестат, не имеет запаха и является прекрасным органическим удобрением, в котором достигнута наибольшая степень минерализации питательных веществ, усваиваемых растениями.

Дигестат, как правило, разделяется на жидкую и твёрдую фракции с помощью шнековых сепараторов. Жидкую фракцию направляют в лагуны, где накапливают до периода внесения в почву. Твёрдая фракция также используется в качестве удобрения. Если применить к твёрдой фракции дополнительную сушку, грануляцию и упаковку, то она будет пригодна для длительного хранения и транспортировки на большие расстояния.

Производство и энергетическое использования биогаза имеет целый ряд обоснованных и подтверждённых мировой практикой преимуществ, а именно:

  1. Возобновляемый источник энергии (ВИЭ). Для производства биогаза используется возобновляемая биомасса.
  2. Широкий спектр используемого сырья для производства биогаза позволяет строить биогазовые установки фактически повсеместно в районах концентрации сельскохозяйственного производства и технологически связанных с ним отраслей промышленности.
  3. Универсальность способов энергетического использования биогаза как, для производства электрической и/или тепловой энергии по месту его образования, так и на любом объекте, подключённом к газотранспортной сети (в случае подачи очищенного биогаза в эту сеть), а также в качестве моторного топлива для автомобилей.
  4. Стабильность производства электроэнергии из биогаза в течение года позволяет покрывать пиковые нагрузки в сети, в том числе и в случае использования нестабильных ВИЭ, например, солнечных и ветровых электростанций.
  5. Создание рабочих мест за счёт формирования рыночной цепочки от поставщиков биомассы до эксплуатирующего персонала энергетических объектов.
  6. Снижение негативного воздействия на окружающую среду за счёт переработки и обезвреживания отходов путём контролированного сбраживания в биогазовых реакторах. Биогазовые технологии – один из основных и наиболее рациональных путей обезвреживания органических отходов. Проекты по производству биогаза позволяют сокращать выбросы парниковых газов в атмосферу.
  7. Агротехнический эффект от применения сброженной в биогазовых реакторах массы на сельскохозяйственных полях проявляется в улучшении структуры почв, регенерации и повышении их плодородия за счёт внесения питательных веществ органического происхождения. Развитие рынка органических удобрений, в том числе из переработанной в биогазовых реакторах массы, в перспективе будет способствовать развитию рынка экологически чистой продукции сельского хозяйства и повышению его конкурентоспособности.

Ориентировочные удельные инвестиционные затраты

БГУ 75 кВтэл. ~ 9.000 €/кВтэл.

БГУ 150 кВтэл. ~ 6.500 €/кВтэл.

БГУ 250 кВтэл. ~ 6.000 €/кВтэл.

БГУ bis 500 кВтэл. ~ 4.500 €/кВтэл.

БГУ 1 МВтэл. ~ 3.500 €/кВтэл.

Выработанная электрическая и тепловая энергия могут обеспечить не только потребности комплекса, но и прилегающей инфраструктуры. Причём сырьё для БГУ бесплатное, что обеспечивает высокую экономическую эффективность после завершения периода окупаемости (4-7 лет). Себестоимость вырабатываемой на БГУ энергии со временем не растёт, а напротив – уменьшается.

Измена жены