Абсолютная, относительная погрешности. Относительная и абсолютная погрешность: понятие, расчет и свойства

При измерении какой-нибудь величины неизменно есть некоторое отклонение от правдивого значения, от того что ни один прибор не может дать точного итога. Для того, дабы определить допустимые отклонения полученных данных от точного значения, применяют представления относительной и безусловной погрешности.

Вам понадобится

  • – итоги измерений;
  • – калькулятор.

Инструкция

1. В первую очередь, проведите несколько измерений прибором одной и той же величины, дабы иметь вероятность посчитать действительное значение. Чем огромнее будет проведено измерений, тем вернее будет итог. Скажем, взвесьте яблоко на электронных весах. Возможен, вы получили итоги 0,106, 0,111, 0,098 кг.

2. Сейчас посчитайте действительное значение величины (действительное, от того что правдивое обнаружить нереально). Для этого сложите полученные итоги и поделите их на число измерений, то есть обнаружьте среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

3. Для расчета безусловной погрешности первого измерения вычитайте из итога действительное значение: 0,106-0,105=0,001. Таким же образом вычислите безусловные погрешности остальных измерений. Обратите внимание, самостоятельно от того, получится итог с минусом либо с плюсом, знак погрешности неизменно позитивный (то есть вы берете модуль значения).

4. Дабы получить относительную погрешность первого измерения, поделите безусловную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обыкновенно относительная погрешность измеряется в процентах, следственно умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.

5. Если правдивое значение теснее вестимо, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического итогов измерений. Сразу вычитайте из правдивого значения полученный итог, при этом вы обнаружите безусловную погрешность.

6. После этого разделяете безусловную погрешность на правдивое значение и умножайте на 100% – это будет относительная погрешность. Скажем, число учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

Погрешность является величиной, которая определяет допустимые отклонения полученных данных от точного значения. Существуют представления относительной и безусловной погрешности. Их нахождение – одна из задач математического обзора. Впрочем на практике больше значимо бывает посчитать погрешность разброса какого-нибудь измеряемого показателя. Физические приборы имеют собственную возможную погрешность. Но не только ее надобно рассматривать при определении показателя. Для подсчета погрешности разброса σ нужно провести несколько измерений данной величины.

Вам понадобится

  • Прибор для измерения требуемой величины

Инструкция

1. Измерьте прибором либо другим средством измерения надобную вам величину. Повторите измерения несколько раз. Тем огромнее будет получено значений, тем выше точность определения погрешности разброса. Традиционно проводят 6-10 измерений. Запишите полученный комплект значений измеряемой величины.

2. Если все полученные значения равны, следственно, погрешность разброса равна нулю. Если же в ряду есть отличающиеся значения, вычислите погрешность разброса. Для ее определения существует особая формула.

3. Согласно формуле, вычислите вначале среднюю величину <х> из полученных значений. Для этого сложите все значения, а их сумму поделите на число проводимых измерений n.

4. Определите поочередно разность между всей полученной величиной и средним значением <х>. Запишите итоги полученных разностей. После этого возведите все разности в квадрат. Обнаружьте сумму данных квадратов. Сбережете конечный полученный итог суммы.

5. Вычислите выражение n(n-1), где n – число проводимых вами измерений. Поделите итог суммы из предыдущего вычисления на полученное значение.

6. Возьмите корень квадратный частного от деления. Это и будет погрешность разброса σ, измеренной вами величины.

Проводя измерения, невозможно гарантировать их точность, всякий прибор дает некую погрешность . Дабы узнать точность измерений либо класс точности прибора, нужно определить безусловную и относительную погрешность .

Вам понадобится

  • – несколько итогов измерений либо иная выборка;
  • – калькулятор.

Инструкция

1. Проведите измерения не менее 3-5 раз, дабы иметь вероятность посчитать действительное значение параметра. Сложите полученные итоги и поделите их на число измерений, вы получили действительное значение, которое применяется в задачах взамен правдивого (его определить нереально). Скажем, если измерения дали итог 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.

2. Обнаружьте безусловную погрешность всего измерения. Для этого из итога измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 безусловных погрешностей, по одному для всякого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули итогов).

3. Дабы узнать относительную погрешность всякого измерения, поделите безусловную погрешность на действительное (правдивое) значение. После этого умножьте полученный итог на 100%, традиционно именно в процентах измеряется эта величина. В примере обнаружьте относительную погрешность таким образом: ?1=0,4/8,4=0,048 (либо 4,8%), ?2=0,6/8,4=0,071 (либо 7,1 %), ?3=0,4/8,4=0,048 (либо 4,8%), ?4=1,4/8,4=0,167 (либо 16,7%), ?5=1,6/8,4=0,19 (либо 19%).

4. На практике для особенно точного отображения погрешности применяют среднее квадратическое отклонение. Дабы его обнаружить, возведите в квадрат все безусловные погрешности измерения и сложите между собой. После этого поделите это число на (N-1), где N – число измерений. Вычислив корень из полученного итога, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.

5. Дабы обнаружить предельную безусловную погрешность , обнаружьте минимальное число, заведомо превышающее безусловную погрешность либо равное ему. В рассмотренном примере примитивно выберите наибольшее значение – 1,6. Также изредка нужно обнаружить предельную относительную погрешность , в таком случае обнаружьте число, превышающее либо равное относительной погрешности, в примере она равна 19%.

Неотделимой частью всякого измерения является некоторая погрешность . Она представляет собой добротную отзыв точности проведенного изыскания. По форме представления она может быть безусловной и относительной.

Вам понадобится

  • – калькулятор.

Инструкция

1. Погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют идентично при многократном повторении измерений. Они непрерывны либо правомерно изменяются. Они могут быть вызваны неправильной установкой прибора либо несовершенством выбранного способа измерения.

2. Вторые появляются от могущества причин, и беспричинный нрав. К ним дозволено отнести неправильное округление при подсчете показаний и могущество окружающей среды. Если такие ошибки гораздо поменьше, чем деления шкалы этого прибора измерения, то в качестве безусловной погрешности уместно взять половину деления.

3. Промах либо дерзкая погрешность представляет собой итог слежения, тот, что круто отличается от всех остальных.

4. Безусловная погрешность приближенного числового значения – это разность между итогом, полученным в ходе измерения и правдивым значением измеряемой величины. Правдивое либо действительное значение особенно верно отражает исследуемую физическую величину. Эта погрешность является самой легкой количественной мерой ошибки. Её дозволено рассчитать по дальнейшей формуле: ?Х = Хисл – Хист. Она может принимать позитивное и негативное значение. Для большего понимания разглядим пример. В школе 1205 учащихся, при округлении до 1200 безусловная погрешность равняется: ? = 1200 – 1205 = 5.

5. Существуют определенные правила расчета погрешности величин. Во-первых, безусловная погрешность суммы 2-х само­стоятельных величин равна сумме их безусловных погрешностей: ?(Х+Y) = ?Х+?Y. Подобный подход применим для разности 2-х погрешностей. Дозволено воспользоваться формулой: ?(Х-Y) = ?Х+?Y.

6. Поправка представляет собой безусловную погрешность , взятую с обратным знаком: ?п = -?. Её применяют для исключения систематической погрешности.

Измерения физических величин неизменно сопровождаются той либо другой погрешностью . Она представляет собой отклонение итогов измерения от правдивого значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

1. Погрешности могут появиться в итоге могущества разных факторов. Среди них дозволено выделить несовершенство средств либо способов измерения, неточности при их изготовлении, неисполнение особых условий при проведении изыскания.

2. Существует несколько систематизаций погрешностей. По форме представления они могут быть безусловными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:?х = хисл- хист. Вторые определяются отношением безусловных погрешностей к величине правдивого значения показателя.Формула расчета имеет вид:? = ?х/хист. Измеряется в процентах либо долях.

3. Приведенная погрешность измерительного прибора находится как отношение?х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

4. По условиям происхождения различают основные и добавочные. Если измерения проводились в типичных условиях, то появляется 1-й вид. Отклонения, обусловленные выходом значений за пределы типичных, является дополнительной. Для ее оценки в документации обыкновенно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

5. Также погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые появляются от могущества причин, и беспричинный нрав. Промах представляет собой итог слежения, тот, что круто отличается от всех остальных.

6. В зависимости от нрава измеряемой величины могут применяться разные методы измерения погрешности. 1-й из них это способ Корнфельда. Он основан на исчислении доверительного промежутка в пределах от малейшего до максимального итога. Погрешность в этом случае будет представлять собой половину разности этих итогов: ?х = (хmax-xmin)/2. Еще один из методов – это расчет средней квадратической погрешности.

Измерения могут проводиться с различной степенью точности. При этом безусловно точными не бывают даже прецизионные приборы. Безусловная и относительная погрешности могут быть малы, но в действительности они есть фактически неизменно. Разница между приближенным и точным значениями некой величины именуется безусловной погрешностью . При этом отклонение может быть как в крупную, так и в меньшую сторону.

Вам понадобится

  • – данные измерений;
  • – калькулятор.

Инструкция

1. Перед тем как рассчитывать безусловную погрешность, примите за начальные данные несколько постулатов. Исключите дерзкие погрешности. Примите, что нужные поправки теснее вычислены и внесены в итог. Такой поправкой может быть, скажем, перенос начальной точки измерений.

2. Примите в качестве начального расположения то, что знамениты и учтены случайные погрешности. При этом подразумевается, что они поменьше систематических, то есть безусловной и относительной, характерных именно для этого прибора.

3. Случайные погрешности влияют на итог даже высокоточных измерений. Следственно всякий итог будет больше либо менее приближенным к безусловному, но неизменно будут расхождения. Определите данный промежуток. Его дозволено выразить формулой (Xизм- ?Х)?Хизм? (Хизм+?Х).

4. Определите величину, максимально приближенную к правдивому значению. В реальных измерениях берется среднее арифметическое, которое дозволено обнаружить по формуле, изображенной на рисунке. Примите итог за правдивую величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

5. Зная правдивую величину измерения, вы можете обнаружить безусловную погрешность, которую нужно рассматривать при всех последующих измерениях. Обнаружьте величину Х1 – данные определенного измерения. Определите разность?Х, отняв от большего числа меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание!
Как водится, на практике безусловно точное измерение провести не получается. Следственно за эталонную величину принимается предельная погрешность. Она представляет собой наивысшее значение модуля безусловной погрешности.

Полезный совет
В утилитарных измерениях за величину безусловной погрешности обыкновенно принимается половина наименьшей цены деления. При действиях с числами за безусловную погрешность принимается половина значения цифры, которая находится в дальнейшим за точными цифрами разряде. Для определения класса точности прибора больше главным бывает отношение безусловной погрешности к итогу измерений либо к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методологии. Точность зависит также от наблюдательности и состояния экспериментатора. Погрешности разделяются на безусловные, относительные и приведенные.

Инструкция

1. Пускай однократное измерение величины дало итог x. Правдивое значение обозначено за x0. Тогда безусловная погрешность ?x=|x-x0|. Она оценивает безусловную ошибку измерения. Безусловная погрешность складывается из 3 составляющих: случайных погрешностей, систематических погрешностей и промахов. Обыкновенно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

2. Правдивое значение измеряемой величины находится в интервале (x-?x ; x+?x). Короче это записывается как x0=x±?x. Главно измерять x и?x в одних и тех же единицах измерения и записывать в одном и том же формате числа, скажем, целая часть и три цифры позже запятой. Выходит, безусловная погрешность дает границы промежутка, в котором с некоторой вероятностью находится правдивое значение.

3. Относительная погрешность выражает отношение безусловной погрешности к действительному значению величины: ?(x)=?x/x0. Это безразмерная величина, она может записываться также в процентах.

4. Измерения бывают прямые и косвенные. В прямых измерениях сразу замеряется желанная величина соответствующим прибором. Скажем, длина тела измеряется линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

5. Если итог представляет собой связанность от 3 непринужденно измеряемых величин, имеющих погрешности?x1, ?x2, ?x3, то погрешность косвенного измерения?F=?[(?x1 ?F/?x1)?+(?x2 ?F/?x2)?+(?x3 ?F/?x3)?]. Тут?F/?x(i) – частные производные от функции по всякой из непринужденно измеряемых величин.

Полезный совет
Промахи – это дерзкие неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методологии эксперимента. Дабы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и детально расписывайте полученный итог.

Итог всякого измерения неминуемо сопровождается отклонением от правдивого значения. Вычислить погрешность измерения дозволено несколькими методами в зависимости от ее типа, скажем, статистическими способами определения доверительного промежутка, среднеквадратического отклонения и пр.

Инструкция

1. Существует несколько причин, по которым появляются погрешности измерений . Это приборная неточность, несовершенство методологии, а также ошибки, вызванные невнимательностью оператора, проводящего замеры. Помимо того, зачастую за правдивое значение параметра принимают его действительную величину, которая на самом деле является лишь особенно возможной, исходя из обзора статистической выборки итогов серии экспериментов.

2. Погрешность – это мера отклонения измеряемого параметра от его правдивого значения. Согласно способу Корнфельда, определяют доверительный промежуток, тот, что гарантирует определенную степень безопасности. При этом находят так называемые доверительные пределы, в которых колеблется величина, а погрешность вычисляют как полусумму этих значений:? = (xmax – xmin)/2.

3. Это интервальная оценка погрешности , которую имеет толк проводить при маленьком объеме статистической выборки. Точечная оценка заключается в вычислении математического ожидания и среднеквадратического отклонения.

4. Математическое ожидание представляет собой интегральную сумму ряда произведений 2-х параметров слежений. Это, собственно, значения измеряемой величины и ее вероятности в этих точках:М = ?xi pi.

5. Классическая формула для вычисления среднеквадратического отклонения полагает расчет среднего значения анализируемой последовательности значений измеряемой величины, а также рассматривает объем серии проведенных экспериментов:? = ?(?(xi – xср)?/(n – 1)).

6. По методу выражения выделяют также безусловную, относительную и приведенную погрешность. Безусловная погрешность выражается в тех же единицах, что и измеряемая величина, и равна разности между ее расчетным и правдивым значением:?x = x1 – x0.

7. Относительная погрешность измерения связана с безусловной, впрочем является больше высокоэффективной. Она не имеет размерности, изредка выражается в процентах. Ее величина равна отношению безусловной погрешности к правдивому либо расчетному значению измеряемого параметра:?x = ?x/x0 либо?x = ?x/x1.

8. Приведенная погрешность выражается отношением между безусловной погрешностью и некоторым условно принятым значением x, которое является постоянным для всех измерений и определяется по градуировке шкалы прибора. Если шкала начинается с нуля (односторонняя), то это нормирующее значение равно ее верхнему пределу, а если двусторонняя – ширине каждого ее диапазона:? = ?x/xn.

Самоконтроль при диабете считается значимым компонентом лечения. Для измерения сахара крови в домашних условиях применяется глюкометр. Возможная погрешность у этого прибора выше, чем у лабораторных анализаторов гликемии.


Измерение сахара крови нужно для оценки результативности лечения диабета и для коррекции дозы препаратов. От назначенной терапии зависит то, сколько раз в месяц понадобится мерить сахар. Изредка забор крови на обзор необходим неоднократно в течение дня, изредка довольно 1-2 раз в неделю. Самоконтроль исключительно нужен беременным и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предуготовлен только для ориентировочного определения концентрации сахара в крови. Возможная погрешность у глюкометра по мировым эталонам составляет 20% при гликемии больше 4,2 ммоль/л. Скажем, если при самоконтроле зафиксирован ярус сахара 5 ммоль/л, то настоящее значение концентрации находится в интервале от 4 до 6 ммоль/л. Возможная погрешность у глюкометра в стандартных условиях измеряется в процентах, а не в ммоль/л. Чем выше показатели, тем огромнее погрешность в безусловных числах. Скажем, если сахар крови достигает около 10 ммоль/л, то оплошность не превышает 2 ммоль/л, а если сахар – около 20 ммоль/л, то разница с итогом лабораторного измерения может быть до 4 ммоль/л. В большинстве случаев глюкометр завышает показатели гликемии.Эталоны допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что всякое двадцатое изыскание может значительно искажать итоги.

Допустимая погрешность у глюкометров различных фирм

Глюкометры подлежат непременной сертификации. В сопровождающих прибор документах обыкновенно указаны цифры возможной погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%. Некоторые изготовители глюкометров уделяют специальное внимание точности измерений. Существуют приборы европейских фирм, которые имеют возможную погрешность поменьше 20%. Лучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность изыскания влияют и некоторые другие факторы. Ненормально подготовленная кожа, слишком малый либо огромный объем полученной капли крови, недопустимый температурный режим – все это может приводить к ошибкам. Только в том случае, если все правила самоконтроля соблюдаются, дозволено рассчитывать на заявленную возможную погрешность изыскания. Правила самоконтроля с поддержкой глюкометра дозволено узнать у лечащего доктора.Точность глюкометра дозволено проверить в сервисном центре. Гарантийные обязательства изготовителей предусматривают бесплатные консультации и устранение неполадок.

Абсолютная погрешность вычислений находится по формуле:

Знак модуля показывает, что нам без разницы, какое значение больше, а какое меньше. Важно, насколько далеко приближенный результат отклонился от точного значения в ту или иную сторону.

Относительная погрешность вычислений находится по формуле:
, или, то же самое:

Относительная погрешность показывает, на сколько процентов приближенный результат отклонился от точного значения. Существует версия формулы и без домножения на 100%, но на практике я почти всегда вижу вышеприведенный вариант с процентами.

После короткой справки вернемся к нашей задаче, в которой мы вычислили приближенное значение функции с помощью дифференциала.

Вычислим точное значение функции с помощью микрокалькулятора:
, строго говоря, значение всё равно приближенное, но мы будем считать его точным. Такие уж задачи встречаются.

Вычислим абсолютную погрешность :

Вычислим относительную погрешность:
, получены тысячные доли процента, таким образом, дифференциал обеспечил просто отличное приближение.

Ответ : , абсолютная погрешность вычислений , относительная погрешность вычислений

Следующий пример для самостоятельного решения:

Пример 4

в точке . Вычислить более точное значение функции в данной точке, оценить абсолютную и относительную погрешность вычислений.

Примерный образец чистового оформления и ответ в конце урока.

Многие обратили внимание, что во всех рассмотренных примерах фигурируют корни. Это не случайно, в большинстве случаев в рассматриваемой задаче действительно предлагаются функции с корнями.

Но для страждущих читателей я раскопал небольшой пример с арксинусом:

Пример 5

Вычислить приближенно с помощью дифференциала значение функции в точке

Этот коротенький, но познавательный пример тоже для самостоятельного решения. А я немного отдохнул, чтобы с новыми силами рассмотреть особое задание:

Пример 6

Вычислить приближенно с помощью дифференциала , результат округлить до двух знаков после запятой.

Решение: Что нового в задании? По условию требуется округлить результат до двух знаков после запятой. Но дело не в этом, школьная задача округления, думаю, не представляет для вас сложностей. Дело в том, что у нас дан тангенс с аргументом, который выражен в градусах. Что делать, когда вам предлагается для решения тригонометрическая функция с градусами? Например, и т. д.

Алгоритм решения принципиально сохраняется, то есть необходимо, как и в предыдущих примерах, применить формулу

Записываем очевидную функцию

Значение нужно представить в виде . Серьёзную помощь окажет таблица значений тригонометрических функций . Кстати, кто её не распечатал, рекомендую это сделать, поскольку заглядывать туда придется на протяжении всего курса изучения высшей математики.


Анализируя таблицу, замечаем «хорошее» значение тангенса, которое близко располагается к 47 градусам:

Таким образом :

После предварительного анализа градусы необходимо перевести в радианы . Так, и только так!

В данном примере непосредственно из тригонометрической таблицы можно выяснить, что . По формуле перевода градусов в радианы: (формулы можно найти в той же таблице).

Дальнейшее шаблонно:

Таким образом : (при вычислениях используем значение ). Результат, как и требовалось по условию, округлён до двух знаков после запятой.

Ответ:

Пример 7

Вычислить приближенно с помощью дифференциала , результат округлить до трёх знаков после запятой.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как видите, ничего сложного, градусы переводим в радианы и придерживаемся обычного алгоритма решения.

Приближенные вычисления с помощью полного дифференциала функции двух переменных

Всё будет очень и очень похоже, поэтому, если вы зашли на эту страницу именно этим заданием, то сначала рекомендую просмотреть хотя бы пару примеров предыдущего пункта.

Для изучения параграфа необходимо уметь находить частные производные второго порядка , куда ж без них. На вышеупомянутом уроке функцию двух переменных я обозначал через букву . Применительно к рассматриваемому заданию удобнее использовать эквивалентное обозначение .

Как и для случая функции одной переменной, условие задачи может быть сформулировано по-разному, и я постараюсь рассмотреть все встречающиеся формулировки.

Пример 8

Решение: Как бы ни было записано условие, в самом решении для обозначения функции, повторюсь, лучше использовать не букву «зет», а .

А вот и рабочая формула:

Перед нами фактически старшая сестра формулы предыдущего параграфа. Переменная только прибавилась. Да что говорить, сам алгоритм решения будет принципиально таким же !

По условию требуется найти приближенное значение функции в точке .

Число 3,04 представим в виде . Колобок сам просится, чтобы его съели :
,

Число 3,95 представим в виде . Дошла очередь и до второй половины Колобка:
,

И не смотрите на всякие лисьи хитрости, Колобок есть - надо его съесть.

Вычислим значение функции в точке :

Дифференциал функции в точке найдём по формуле:

Из формулы следует, что нужно найти частные производные первого порядка и вычислить их значения в точке .

Вычислим частные производные первого порядка в точке :

Полный дифференциал в точке :

Таким образом, по формуле приближенное значение функции в точке :

Вычислим точное значение функции в точке :

Вот это значение является абсолютно точным.

Погрешности рассчитываются по стандартным формулам, о которых уже шла речь в этой статье.

Абсолютная погрешность:

Относительная погрешность:

Ответ: , абсолютная погрешность: , относительная погрешность:

Пример 9

Вычислить приближенное значение функции в точке с помощью полного дифференциала, оценить абсолютную и относительную погрешность.

Это пример для самостоятельного решения. Кто остановится подробнее на данном примере, тот обратит внимание на то, что погрешности вычислений получились весьма и весьма заметными. Это произошло по следующей причине: в предложенной задаче достаточно велики приращения аргументов: .

Общая закономерность таков а - чем больше эти приращения по абсолютной величине, тем ниже точность вычислений. Так, например, для похожей точки приращения будут небольшими: , и точность приближенных вычислений получится очень высокой.

Данная особенность справедлива и для случая функции одной переменной (первая часть урока).

Пример 10


Решение: Вычислим данное выражение приближенно с помощью полного дифференциала функции двух переменных:

Отличие от Примеров 8-9 состоит в том, что нам сначала необходимо составить функцию двух переменных: . Как составлена функция, думаю, всем интуитивно понятно.

Значение 4,9973 близко к «пятерке», поэтому: , .
Значение 0,9919 близко к «единице», следовательно, полагаем: , .

Вычислим значение функции в точке :

Дифференциал в точке найдем по формуле:

Для этого вычислим частные производные первого порядка в точке .

Производные здесь не самые простые, и следует быть аккуратным:

;


.

Полный дифференциал в точке :

Таким образом, приближенное значение данного выражения:

Вычислим более точное значение с помощью микрокалькулятора: 2,998899527

Найдем относительную погрешность вычислений:

Ответ: ,

Как раз иллюстрация вышесказанному, в рассмотренной задаче приращения аргументов очень малы , и погрешность получилась фантастически мизерной.

Пример 11

С помощью полного дифференциала функции двух переменных вычислить приближенно значение данного выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Как уже отмечалось, наиболее частный гость в данном типе заданий - это какие-нибудь корни. Но время от времени встречаются и другие функции. И заключительный простой пример для релаксации:

Пример 12

С помощью полного дифференциала функции двух переменных вычислить приближенно значение функции , если

Решение ближе к дну страницы. Еще раз обратите внимание на формулировки заданий урока, в различных примерах на практике формулировки могут быть разными, но это принципиально не меняет сути и алгоритма решения.

Если честно, немного утомился, поскольку материал был нудноватый. Непедагогично это было говорить в начале статьи, но сейчас-то уже можно =) Действительно, задачи вычислительной математики обычно не очень сложны, не очень интересны, самое важное, пожалуй, не допустить ошибку в обычных расчётах.

Да не сотрутся клавиши вашего калькулятора!

Решения и ответы:

Пример 2 :

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Ответ:

Пример 4:

Решение: Используем формулу:
В данном случае: , ,


Таким образом:

Вычислим более точное значение функции с помощью микрокалькулятора:

Абсолютная погрешность:

Относительная погрешность:


Ответ: , абсолютная погрешность вычислений , относительная погрешность вычислений

Пример 5:

Решение: Используем формулу:

В данном случае: , ,


Таким образом :

Ответ:

Пример 7:

Решение: Используем формулу:
В данном случае: , ,

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными , если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях

Абсолютная и относительная погрешность. Пусть проведеноN измерений одной и той же величиныx в отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x 1 ,x 2 , …,x N . В качестве наилучшего выбирается среднее значение измеренной величины:

Абсолютной погрешностью единичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности N единичных измерений:

(2)

называется средней абсолютной погрешностью .

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Приборные погрешности при прямых измерениях

    Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

    Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

    Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

    Погрешность электроизмерительных приборов вычисляется согласно классу точности С , указанному на шкале прибора:

Например:
и
,

где U max и I max – предел измерения прибора.

    Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b , c , значения которых можно найти прямыми измерениями: Х = f(a , b , c …).

Среднее арифметическое результата косвенных измерений будет равно:

X = f(a ,b ,c …).

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a , b , c …). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c + d ).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 =
. (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Х = Х(5)

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

X = f(a ,b ,c …).

4) Логарифмируют исходную формулу Х = f(a , b , c …) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Х = Х ср Х

Абсолютные и относительные погрешности простейших функций приведены в таблице:

Абсолютная

погрешность

Относительная

погрешность

a + b

a+ b

a+ b

Физические величины характеризуются понятием «точность погрешности». Есть высказывание, что путем проведения измерений можно прийти к познанию. Так удастся узнать, какова высота дома или длина улицы, как и многие другие.

Введение

Разберемся в значении понятия «измерить величину». Процесс измерения заключается в том, чтобы сравнить её с однородными величинами, которые принимают в качестве единицы.

Для определения объёма используются литры, для вычисления массы применяются граммы. Чтобы было удобнее производить расчеты, ввели систему СИ международной классификации единиц.

За измерение длины вязли метры, массы - килограммы, объёма - кубические литры, времени - секунды, скорости - метры за секунду.

При вычислении физических величин не всегда нужно пользоваться традиционным способом, достаточно применить вычисление при помощи формулы. К примеру, для вычисления таких показателей, как средняя скорость, необходимо поделить пройденное расстояние на время, проведенное в пути. Так производятся вычисления средней скорости.

Применяя единицы измерения, которые в десять, сто, тысячу раз превышают показатели принятых измерительных единиц, их называют кратными.

Наименование каждой приставки соответствует своему числу множителя:

  1. Дека.
  2. Гекто.
  3. Кило.
  4. Мега.
  5. Гига.
  6. Тера.

В физической науке для записи таких множителей используется степень числа 10. К примеру, миллион обозначается как 10 6 .

В простой линейке длина имеет единицу измерения - сантиметр. Она в 100 раз меньше метра. 15-сантиметровая линейка имеет длину 0,15 м.

Линейка является простейшим видом измерительных приборов для того, чтобы измерять показатели длины. Более сложные приборы представлены термометром - чтобы гигрометром - чтобы определять влажность, амперметром - замерять уровень силы, с которой распространяется электрический ток.

Насколько точны будут показатели проведенных измерений?

Возьмем линейку и простой карандаш. Наша задача заключается в измерении длины этой канцелярской принадлежности.

Для начала потребуется определить, какова цена деления, указанная на шкале измерительного прибора. На двух делениях, которые являются ближайшими штрихами шкалы, написаны цифры, к примеру, «1» и «2».

Необходимо подсчитать, сколько делений заключено в промежутке этих цифр. При правильном подсчете получится «10». Вычтем от того числа, которое является большим, число, которое будет меньшим, и поделим на число, которое составляют деления между цифрами:

(2-1)/10 = 0,1 (см)

Так определяем, что ценой, определяющей деление канцелярской принадлежности, является число 0,1 см или 1 мм. Наглядно показано, как определяется показатель цены для деления с применением любого измерительного прибора.

Измеряя карандаш с длиной, которая немного меньше, чем 10 см, воспользуемся полученными знаниями. При отсутствии на линейке мелкого деления, следовал бы вывод, что предмет имеет длину 10 см. Это приблизительное значение названо измерительной погрешностью. Она указывает на тот уровень неточности, которая может допускаться при проведении измерений.

Определяя параметры длины карандаша с более высоким уровнем точности, большей ценой деления достигается большая измерительная точность, которая обеспечивает меньшую погрешность.

При этом абсолютно точного выполнения измерений не может быть. А показатели не должны превышать размеры цены деления.

Установлено, что размеры измерительной погрешности составляют ½ цены, которая указана на делениях прибора, который применяется для определения размеров.

После выполнения замеров карандаша в 9,7 см определим показатели его погрешности. Это промежуток 9,65 - 9,85 см.

Формулой, измеряющей такую погрешность, является вычисление:

А = а ± D (а)

А - в виде величины для измерительных процессов;

а - значение результата замеров;

D - обозначение абсолютной погрешности.

При вычитании или складывании величин с погрешностью результат будет равен сумме показателей погрешности, которую составляет каждая отдельная величина.

Знакомство с понятием

Если рассматривать в зависимости от способа её выражения, можно выделить такие разновидности:

  • Абсолютную.
  • Относительную.
  • Приведенную.

Абсолютная погрешность измерений обозначается буквой «Дельта» прописной. Это понятие определяется в виде разности между измеренными и действительными значениями той физической величины, которая измеряется.

Выражением абсолютной погрешность измерений являются единицы той величины, которую необходимо измерить.

При измерении массы она будет выражаться, к примеру, в килограммах. Это не эталон точности измерений.

Как рассчитать погрешность прямых измерений?

Есть способы изображения погрешности измерения и их вычисления. Для этого важно уметь определять физическую величину с необходимой точностью, знать, что такое абсолютная погрешность измерений, что её никто никогда не сможет найти. Можно вычислить только её граничное значение.

Даже если условно употребляется этот термин, он указывает именно на граничные данные. Абсолютная и относительная погрешность измерений обозначаются одинаковыми буквами, разница в их написании.

При измерении длины абсолютная погрешность будет измеряться в тех единицах, в которых исчисляться длина. А относительная погрешность вычисляется без размеров, так как она является отношением абсолютной погрешности к результату измерения. Такую величину часто выражают в процентах или в долях.

Абсолютная и относительная погрешность измерений имеют несколько разных способов вычисления в зависимости от того, какой физических величин.

Понятие прямого измерения

Абсолютная и относительная погрешность прямых измерений зависят от класса точности прибора и умения определять погрешность взвешивания.

Прежде чем говорить о том, как вычисляется погрешность, необходимо уточнить определения. Прямым называется измерение, при котором происходит непосредственное считывание результата с приборной шкалы.

Когда мы пользуемся термометром, линейкой, вольтметром или амперметром, то всегда проводим именно прямые измерения, так как применяем непосредственно прибор со шкалой.

Есть два фактора, которые влияют на результативность показаний:

  • Погрешностью приборов.
  • Погрешностью системы отсчета.

Граница абсолютной погрешности при прямых измерениях будет равна сумме погрешности, которую показывает прибор, и погрешности, которая происходит в процессе отсчета.

D = D (пр.) + D (отс.)

Пример с медицинским термометром

Показатели погрешности указаны на самом приборе. На медицинском термометре прописана погрешность 0,1 градусов Цельсия. Погрешность отсчета составляет половину цены деления.

D отс. = С/2

Если цена деления 0,1 градуса, то для медицинского термометра можно произвести вычисления:

D = 0,1 o С + 0,1 o С / 2 = 0,15 o С

На тыльной стороне шкалы другого термометра есть ТУ и указано, что для правильности измерений необходимо погружать термометр всей тыльной частью. не указана. Остается только погрешность отсчета.

Если цена деления шкалы этого термометра равна 2 o С, то можно измерять температуру с точностью до 1 o С. Таковы пределы допускаемой абсолютной погрешности измерений и вычисление абсолютной погрешности измерений.

Особую систему вычисления точности используют в электроизмерительных приборах.

Точность электроизмерительных приборов

Чтобы задать точность таких устройств, используется величина, называемая классом точности. Для её обозначения применяют букву «Гамма». Чтобы точно произвести определение абсолютной и относительной погрешности измерений, нужно знать класс точности прибора, который указан на шкале.

Возьмем, к примеру, амперметр. На его шкале указан класс точности, который показывает число 0,5. Он пригоден для измерений на постоянном и переменном токе, относится к устройствам электромагнитной системы.

Это достаточно точный прибор. Если сравнить его со школьным вольтметром, видно, что у него класс точности - 4. Эту величину обязательно знать для дальнейших вычислений.

Применение знаний

Таким образом, D c = c (max) Х γ /100

Этой формулой и будем пользоваться для конкретных примеров. Воспользуемся вольтметром и найдем погрешность измерения напряжения, которое дает батарейка.

Подключим батарейку непосредственно к вольтметру, предварительно проверив, стоит ли стрелка на нуле. При подключении прибора стрелка отклонилась на 4,2 деления. Это состояние можно охарактеризовать так:

  1. Видно, что максимальное значение U для данного предмета равно 6.
  2. Класс точности -(γ) = 4.
  3. U(о) = 4,2 В.
  4. С=0,2 В

Пользуясь этими данными формулы, абсолютная и относительная погрешность измерений вычисляется так:

D U = DU (пр.)+ С/2

D U (пр.) = U (max) Х γ /100

D U (пр.) = 6 В Х 4/100 = 0, 24 В

Это погрешность прибора.

Расчет абсолютной погрешности измерений в этом случае будет выполнен так:

D U = 0,24 В + 0,1 В = 0,34 В

По рассмотренной формуле без труда можно узнать, как рассчитать абсолютную погрешность измерений.

Существует правило округления погрешностей. Оно позволяет найти средний показатель между границей абсолютной погрешности и относительной.

Учимся определять погрешность взвешивания

Это один из примеров прямых измерений. На особом месте стоит взвешивание. Ведь у рычажных весов нет шкалы. Научимся определять погрешность такого процесса. На точность измерения массы влияет точность гирь и совершенство самих весов.

Мы пользуемся рычажными весами с набором гирь, которые необходимо класть именно на правую чашу весов. Для взвешивания возьмем линейку.

Перед началом опыта нужно уравновесить весы. Линейку кладем на левую чашу.

Масса будет равна сумме установленных гирь. Определим погрешность измерения этой величины.

D m = D m (весов) + D m (гирь)

Погрешность измерения массы складывается из двух слагаемых, связанных с весами и гирями. Чтобы узнать каждую из этих величин, на заводах по выпуску весов и гирь продукция снабжается специальными документами, которые позволяют вычислить точность.

Применение таблиц

Воспользуемся стандартной таблицей. Погрешность весов зависит от того, какую массу положили на весы. Чем она больше, тем, соответственно, больше и погрешность.

Даже если положить очень легкое тело, погрешность будет. Этот связано с процессом трения, происходящим в осях.

Вторая таблица относится к набору гирь. На ней указано, что каждая из них имеет свою погрешность массы. 10-граммовая имеет погрешность в 1 мг, как и 20-граммовая. Просчитаем сумму погрешностей каждой из этих гирек, взятой из таблицы.

Удобно писать массу и погрешность массы в двух строчках, которые расположены одна под другой. Чем меньше гири, тем точнее измерение.

Итоги

В ходе рассмотренного материала установлено, что определить абсолютную погрешность невозможно. Можно лишь установить её граничные показатели. Для этого используются формулы, описанные выше в вычислениях. Данный материал предложен для изучения в школе для учеников 8-9 классов. На основе полученных знаний можно решать задачи на определение абсолютной и относительной погрешности.

Измерения многих величин, встречающихся в природе, не может быть точным. Измерение дает число, выражающее величину с той или иной степенью точности (измерение длины с точностью до 0,01 см, вычисление значения функции в точке с точностью до и т.д.), то есть приближенно, с некоторой погрешностью. Погрешность может быть задана наперед, или, наоборот, ее требуется найти.

Теория погрешностей имеет объектом своего изучения в основном приближенные числа. При вычислениях вместо обычно используют приближенные числа: (если точность не особо важна), (если точность важна). Как проводить вычисления с приближенными числами, определять их погрешности – этим занимается теория приближенных вычислений (теория погрешностей).

В дальнейшем точные числа будем обозначать заглавными буквами , а соответствующие им приближенные – строчными

Погрешности, возникающие на том или ином этапе решения задачи можно условно разделить на три типа:

1) Погрешность задачи. Этот тип погрешности возникает при построении математической модели явления. Далеко не всегда оказывается возможным учесть все факторы и степень их влияния на окончательный результат. То есть, математическая модель объекта не является его точным образом, не является точным его описание. Такая погрешность является неустранимой.

2) Погрешность метода. Эта погрешность возникает в результате подмены исходной математической модели более упрощенной, например, в некоторых задачах корреляционного анализа приемлемой является линейная модель. Такая погрешность является устранимой, так как на этапах вычисления она может свестись к сколь угодно малой величине.

3) Вычислительная («машинная») погрешность. Возникает при выполнении арифметических операций компьютером.

Определение 1.1. Пусть – точное значение величины (числа), – приближенное значение той же величины (). Истинной абсолютной погрешностью приближенного числа называется модуль разности точного и приближенного значений:

. (1.1)

Пусть, например, =1/3. При вычислении на МК дали результат деления 1 на 3 как приближенное число =0,33. Тогда .

Однако в действительности в большинстве случаев точное значение величины не известно, а значит, нельзя применять (1.1), то есть нельзя найти истинную абсолютную погрешностью. Поэтому вводят другую величину, служащей некоторой оценкой (верхней границей для ).

Определение 1.2. Предельной абсолютной погрешностью приближенного числа , представляющее неизвестное точное число , называется такое возможно меньшее число, которого не превосходит истинная абсолютная погрешность , то есть . (1.2)

Для приближенного числа величин , удовлетворяющих неравенству (1.2), существует бесконечно много, но самым ценным из них будет наименьшее из всех найденных. Из (1.2) на основании определения модуля имеем , или сокращенно в виде равенства


. (1.3)

Равенство (1.3) определяет границы, в которых находится неизвестное точное число (говорят, что приближенное число выражает точное с предельной абсолютной погрешностью). Нетрудно видеть, что чем меньше , тем точнее определяются эти границы.

Например, если измерения некоторой величины дали результат см, при этом точность этих измерений не превосходила 1 см, то истинная (точная) длина см.

Пример 1.1. Дано число . Найти предельную абсолютную погрешность числа числом .

Решение: Из равенства (1.3) для числа ( =1,243; =0,0005) имеем двойное неравенство , то есть

Тогда задача ставится так: найти для числа предельную абсолютную погрешность , удовлетворяющую неравенству . Учитывая условие (*), получим (в (*) вычитаем из каждой части неравенства)

Так как в нашем случае , то , откуда =0,0035.

Ответ: =0,0035.

Предельная абсолютная погрешность часто плохо дает представление о точности измерений или вычислений. Например, =1 м при измерениях длины здания укажет, что они проводились не точно, а та же погрешность =1 м при измерениях расстояния между городами дает очень качественную оценку. Поэтому вводят другую величину.

Определение 1.3. Истинной относительной погрешностью числа , являющегося приближенным значением точного числа , называется отношение истинной абсолютной погрешности числа к модулю самого числа :

. (1.4)

Например, если соответственно точное и приближенное значения, то

Однако формула (1.4) неприменима, если не известно точное значение числа. Поэтому по аналогии с предельной абсолютной погрешностью вводят предельную относительную погрешность.

Определение 1.4. Предельной относительной погрешностью числа , являющегося приближенным значением неизвестного точного числа , называется возможно меньшее число , которого не превосходит истинная относительная погрешность , то есть

. (1.5)

Из неравенства (1.2) имеем ; откуда, учитывая (1.5)

Формула (1.6) имеет большую практическую применимость по сравнению с (1.5), так как в ней не участвует точное значение. Учитывая (1.6), (1.3), можно найти границы, в которых заключается точное значение неизвестной величины.

Измена мужа