Минерализация воды для человека. Обсуждение оптимального минерального состава питьевой воды

Важнейшие для здоровья параметры питьевой воды

Минерализация питьевой воды

Согласно требованиям СанПиН 2.1.4.1074-01 максимально допустимый уровень минерализации (сухого остатка) в питьевой воде из централизованных систем питьевого водоснабжения равен 1 грамм/литр или 1000 частиц на миллион (parts per million, ppm) к общему количеству растворенных в воде твердых частиц. Когда уровень минерализации превышает 1000 мг/литр, считается, что такая вода не пригодна для потребления человеком. Высокий уровень минерализации является индикатором потенциальной опасности, а также подтверждает необходимость проведения лабораторных исследований. В большинстве случаев высокий уровень минерализации вызван содержанием калия, солей хлористоводородной кислоты и натрия, ионы которых имеют небольшой или краткосрочный эффект. Однако помимо этого в воде могут содержаться токсичные ионы тяжелых металловъ, представляющие опасность для живых организмов.

Также в настоящее время известно, что недостаток в воде основных ионов калия, магния, натрия, йода и т.д. приводит к целому ряду заболеваний: гипертоническая болезнь, ишемическая болезнь сердца, остеохондроз (даже у детей 1,5 - летнего возраста), остеопороз (ломкость костей) , нарушение осанки, снижение интеллекта и памяти, усиленное камнеобразование в желчевыводящих путях и мочевыделительной системе, разрушение зубной эмали, выпадение волос. Ионы кальция и магния крайне необходимы для нормального развития и функционирования организма человека. Особенно остро в них нуждаются дети, беременные и кормящие женщины, пожилые люди.

Нормальная минерализация воды составляет 100-200 мг/литр.

Органические примеси питьевой воды

Наиболее опасны для человека крупные органические соединения, которые на 90% являются канцерогенами (канцерогены - это вещества, вызывающие раковые заболевания) или мутагенами (мутагены - любые агенты или факторы, вызывающие мутацию - стойкое наследственное изменение). Особо опасны хлорорганические соединения, образующиеся при кипячении хлорированной воды, т.к. они являются сильными канцерогенами, мутагенами и токсинами (токсины - это вещества бактериального, растительного или животного происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека). Остальные 10% крупной органики в лучшем случае нейтральны в отношении организма. Полезных для человека крупных органических соединений, растворенных в воде, всего 2-3. Это ферменты (ферменты, они же энзимы - специфические белковые катализаторы, присутствующие во всех живых клетках. Ферменты направляют и регулируют обмен веществ), необходимые в очень малых дозах.

Ни для кого не секрет, что на бытовом уровне отношение к качеству воды зачастую бывает легкомысленным, основанным на вкусовой оценке «нравится - не нравится». Существуют объективные показатели качества воды, которые должны соблюдаться непосредственно при потреблении. Изначально вода стандартного качества, но по дороге к потребителю она может вобрать в себя много «лишнего».

Что такое pH?

pH - это водородный показатель, который характеризует концентрацию свободных ионов водорода в воде. Для удобства отображения был введен специальный показатель, названный рН.

pH воды - один из важнейших рабочих показателей качества воды, во многом определяющих характер химических и биологических процессов, происходящих в воде. В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и т.д.

Обычно уровень рН находится в пределах, при которых он не влияет на потребительские качества воды. Так, в речных водах pH обычно находится в пределах 6.5-8.5, в атмосферных осадках 4.6-6.1, в болотах 5.5-6.0, в морских водах 7.9-8.3. Поэтому Всемирная Организация Здравоохранения (далее - ВОЗ) не предлагает какой-либо рекомендуемой по медицинским показателям величины для рН.

Что такое минерализация воды?

Минерализация представляет собой количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых твердых веществ или общим солесодержанием, так как растворенные в воде вещества находятся именно в виде солей.

По данным ВОЗ надежные данные о возможном воздействии на здоровье повышенного солесодержания отсутствуют. Поэтому по медицинским показаниям ограничения ВОЗ не вводятся. Обычно хорошим считается вкус воды при общем солесодержании до 600 мг/л, однако уже при величинах более 1000-1200 мг/л вода может вызвать нарекания у потребителей.

Вопрос о воде с низким солесодержанием также открыт. Считается, что такая вода слишком пресная и безвкусная, хотя многие тысячи людей, употребляющих обратноосмотическую воду, отличающуюся очень низким солесодержанием, наоборот находят ее более приемлемой.

Что означает «мягкая» и «жесткая» вода»?

Жесткостью называют свойство воды, обусловленное наличием в ней растворимых солей кальция и магния.

"Жесткая вода" - одна из самых распространенных проблем, причем как в загородных домах с автономным водоснабжением, так и в городских квартирах. Степень жесткости измеряется в миллиграмм-эквиваленте на литр (мг-экв/л). По американской классификации (для питьевой воды) при содержании солей жесткости менее 2 мг-экв/л вода считается "мягкой", от 2 до 4 мг-экв/л - нормальной (для пищевых целей), от 4 до 6 мг-экв/л - жесткой, а свыше 6 мг-экв/л - очень жесткой.

Для многих целей жесткость воды не играет существенной роли (например, для тушения пожаров, полива огорода, уборки улиц и тротуаров). Но в ряде случаев жесткость может создать проблемы. При принятии ванны, мытье посуды, стирке, мытье машины жесткая вода гораздо менее предпочтительна, чем мягкая. И вот почему: при использовании мягкой воды расходуется в 2 раза меньше моющих средств.

Жесткая вода, взаимодействуя с мылом, образует "мыльные шлаки", которые не смываются водой и оставляют малосимпатичные разводы на посуде и поверхности сантехники; "Мыльные шлаки" также не смываются с поверхности человеческой кожи, забивая поры и покрывая каждый волос на теле, что может стать причиной появления сыпи, раздражения, зуда.

При нагревании воды содержащиеся в ней соли жесткости кристаллизуются, выпадая в виде накипи. Накипь является причиной 90% отказов водонагревательного оборудования. Поэтому к воде, подвергаемой нагреву в котлах, бойлерах и т.п., предъявляются на поря-док более строгие требования по жесткости;

Что такое железистая вода?

Разные виды железа "ведут" себя в воде по-разному. Так, если наливаемая в сосуд вода чиста и прозрачна, но через некоторое время образуется краснобурый осадок, то это признак наличия в воде двухвалентного железа. В случае если вода уже из крана идет желтовато-бурая и образуется осадок при отстаивании - надо "винить" трехвалентное железо. Коллоидное железо окрашивает воду, но не образует осадка. Бактериальное железо проявляет себя радужной пленкой на поверхности воды и желеобразной массой, накапливаемой внутри труб.

Необходимо также отметить, что "беда никогда не ходит одна" и на практике почти всегда встречается сочетание нескольких или даже всех видов железа. Учитывая, что нет единых утвержденных методик определения органического, коллоидного и бактериального железа, то в деле подбора эффективного метода (или комплекса метдов) очистки воды от железа очень много зависит от практического опыта фирмы, занимающейся водоочисткой.

Методы удаления железа из воды

Удаление из воды железа - без преувеличения одна из самых сложных задач в водоочистке. Каждый из существующих методов применим только в определенных пределах, и имеет как достоинства, так и существенные недостатки. Выбор конкретного метода удаления железа (или их комбинации) в большей степени зависит от опыта водоочистной компании. Не без гордости можем сообщить, что нам в своей практике неоднократно приходилось сталкиваться с содержанием железа в 20-35 мг/л и успешно удалять его.

Итак, к существующим методам удаления железа можно отнести:

1. Окисление (кислородом воздуха или хлором, перекисью водорода, озоном) с последующим осаждением и фильтрацией. Это наиболее старый способ и используется только на крупных муниципальных системах. Наиболее передовым и сильным окислителем на сегодняшний день является озон. Однако установки для его производства довольно сложны, дороги и требуют значительных затрат электроэнергии, что ограничивает его применение.

У всех перечисленных способов окисления есть ряд недостатков:

Во-первых, если не применять коагулянты, то процесс осаждения окисленного железа занимает долгое время, в противном же случае фильтрация некоагулированных частиц сильно затрудняется из-за их малого размера.

Во-вторых, эти методы окисления слабо помогают в борьбе с органическим железом.

В-третьих, наличие в воде железа часто сопровождается наличием марганца. Марганец окисляется гораздо труднее, чем железо и, кроме того, при значительно более высоких уровнях рН.

2. Каталитическое окисление с последующей фильтрацией. Наиболее распространенный на сегодняшний день метод удаления железа, применяемый в компактных высокопроизводительных системах.

Суть метода заключается в том, что реакция окисления железа происходит на поверхности гранул специальной фильтрующей среды, обладающей свойствами катализатора (ускорителя химической реакции окисления).

Все системы на основе данного типа окисления кроме специфических черт имеют и ряд недостатков:

Во-первых. Они неэффективны в отношении органического железа.

Во-вторых, системы этого типа все равно не могут справиться со случаями, когда содержание железа в воде превышает 15-20 мг/л, что совсем не редкость. Присутствие в воде марганца только усугубляет ситуацию.

3. Ионный обмен. Ионный обмен как метод обработки воды известен довольно давно и применялся (да и теперь применяется) в основном для умягчения воды. Достоинством ионного обмена является также и то, что он "не боится" верного спутника железа - марганца, сильно осложняющего работу систем, основанных на использовании методов окисления. Главное же преимущество ионного обмена в том, что из воды могут быть удалены железо и марганец, находящиеся в растворенном состоянии.

Однако на практике, возможность применения катионообменных смол по железу, бывает сильно затруднена.

Объясняется это следующими причинами:

Во-первых, ионообменные смолы очень критичны к наличию в воде трехвалентного железа, которое "забивает" смолу и очень плохо из нее вымывается.

Во-вторых, при высокой концентрации в воде железа, с одной стороны возрастает вероятность образования нерастворимого трехвалентного железа, и, с другой стороны, гораздо быстрее истощается ионообменная ёмкость смолы.

В-третьих, наличие в воде органических веществ (в том числе и органического железа) может привести к быстрому "зарастанию" смолы органической пленкой, которая служит питательной средой для бактерий.

Тем не менее, именно применение ионообменных смол представляется наиболее перспективным направлением в деле борьбы с железом и марганцем в воде.

4. Мембранные методы. Мембранные технологии достаточно широко используются в водоподготовке, однако удаление железа отнюдь не главное их предназначение. Этим и объясняется тот факт, что применение мембран пока не входит в число стандартных методов борьбы с присутствием в воде железа. Основное назначение мембранных систем - удаление бактерий, простейших и вирусов, подготовка высококачественной питьевой воды. То есть они предназначены для глубокой доочистки воды.

Практическое же применение мембран ограничено следующими факторами:

Во-первых, мембраны даже в большей степени, чем гранулированные фильтрующие среды и ионообменные смолы, критичны к "зарастанию" органикой и забиванию поверхности нерастворимыми частицами (в данном случае ржавчиной). То есть мембранные системы применимы либо там, где нет железа, либо проблема с этими загрязнениями должна быть предварительно решена другими методами.

Во-вторых, стоимость. Мембранные системы весьма и весьма недешевы. Их применение рентабельно только там, где требуется очень высокое качество воды (например, в пищевой промышленности).

Что такое окисляемость?

Окисляемость - это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей.

Выражается этот параметр в миллиграммах кислорода, участвовшего в окислении этих веществ, содержащихся в 1 дм3 воды.

Наиболее высокая степень окисления достигается бихроматным и иодатным методами. Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды.


Поверхностные воды имеют более высокую окисляемость по сравнению с подземными. Так, горные реки и озера характеризуются окисляемостью 2-3 мг О2/дм3, реки равнинные - 5-12 мг О2 /дм3. Подземные же воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграмма О2 /дм3.

Как нормируются чувственные показатели качества воды?

К числу органолептических (или чувственных) показателей относятся те параметры качества воды, которые определяют ее потребительские свойства, т.е. те свойства, которые непосредственно влияют на органы чувств человека (обоняние, осязание, зрение). Наиболее значимые из этих параметров - вкус и запах - не поддаются формальному измерению, поэтому их определение производится экспертным путем. Работа экспертов, дающих оценку органолептическим свойствам воды, очень сложна и ответственна и во многом сродни работе дегустаторов самых изысканных напитков, так как они должны улавливать малейшие оттенки вкуса и запаха.

Запах и привкус

Химически чистая вода совершенно лишена вкуса и запаха. Однако в природе такая вода не встречается - она всегда содержит в своем составе растворенные вещества. По мере роста концентрации неорганических и органических веществ, вода начинает принимать тот или иной привкус и/или запах.

Основными причинами возникновения привкуса и запаха в воде являются:

  • Гниющие растения. Водоросли и водные растения в процессе гниения могут взывать рыбный, травяной, гнилостный запах воды.
  • Грибки и плесень. Эти микроорганизмы вызывают возникновение плесневого, зем-листого или затхлого запаха и привкуса.
  • Железистые и сернистые бактерии.
  • Железо, марганец, медь, цинк. Продукты коррозии этих металлов придают воде характерный резкий привкус.
  • Хлорирование воды. Вопреки широко распространенному мнению, сам хлор при правильном использовании не вызывает возникновения сколько-нибудь заметного запаха или привкуса. Появление же такого запаха/привкуса свидетельствует о передозировке при хлорировании. В то же время, хлор способен вступать в химические реакции с различными растворенными в воде веществами, образуя при этом соединения, которые собственно и придают воде хорошо известный многим запах и привкус "хлорки".

Цветность

Цветность определяется путем сравнения окраски испытуемой воды с эталонами и выражается в градусах платиново-кобальтовой шкалы. Различают "истинный цвет", обусловленный только растворенными веществами, и "кажущийся" цвет, вызванный присутствием в воде коллоидных и взвешенных частиц.

Цветность природных вод обусловлена в основном присутствием окрашенных органических веществ и соединений железа и некоторых других металлов.

Наибольшую цветность имеют поверхностные воды рек и озер, расположенных в зонах торфяных болот и заболоченных лесов, наименьшую - в лесостепях и степных зонах.

Мутность

Мутность воды вызвана присутствием веществ органического и неорганического происхождения.

В России мутность воды определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (едини-цы мутности на дм3) при использовании основной стандартной суспензии формазина.

Общее микробное число

В связи с тем, что определение патогенных бактерий при биологическом анализе воды представляет собой непростую и трудоемкую задачу, в качестве критерия бактериологической загрязненности используют подсчет общего числа образующих колонии бактерий (Colony Forming Units - CFU) в 1 мл воды. Полученное значение называют общим микробным числом.

В основном для выделения бактерий и подсчета общего микробного числа используют метод фильтрации через мембрану.
При этом методе определенное количество воды пропускается через специальную мембрану. В результате, на поверхности мембраны остаются все находящиеся в воде бактерии. После чего мембрану с бактериями помещают на определенное время в специальную питательную среду при температуре 30-37 оС.

Во время этого периода, называемого инкубационным, бактерии получают возможность размножиться и образовать хорошо различимые колонии, которые уже легко поддаются подсчету.

Колиформные бактерии

Термин "Колиформные организмы" (или "колиформные бактерии") относится к классу бактерий, имеющих форму палочек, в основном живущих и размножающихся в нижнем отделе пищеварительного тракта человека и большинства теплокровных животных (например, домашнего скота и водоплавающих птиц).

В воду попадают, как правило, с фекальными стоками и способны выживать в ней в течение нескольких недель, хотя и лишены способности к размножению.

Минерализация, общее солесодержание (TDS)

  1. Большинство рек имеет минерализацию от нескольких десятков миллиграммов в литре до нескольких сотен. Их удельная электропроводность варьируется в пределах от 30 мкСим/см до 1500 мкСим/см.
  2. Минерализация подземных вод и соленых озер изменяется в интервале от 40-50 мг/дм 3 до 650 г/кг (плотность в этом случае уже значительно отличается от единицы).
  3. Удельная электропроводность атмосферных осадков (с минерализацией от 3 до 60 мг/дм 3) составляет величины 20-120 мкСим/см.

Многие производства, сельское хозяйство, предприятия питьевого водоснабжения предъявляют определенные требования к качеству вод, в частности, к минерализации, так как воды, содержащие большое количество солей, отрицательно влияют на растительные и животные организмы, технологию производства и качество продукции, вызывают образование накипи на стенках котлов, коррозию, засоление почв.

Классификация природных вод по минерализации.

В соответствии с гигиеническими требованиями к качеству питьевой воды суммарная минерализация не должна превышать величины 1000 мг/дм 3 . По согласованию с органами Роспотребнадзора для водопровода, подающего воду без соответствующей обработки (например, из артезианских скважин), допускается увеличение минерализации до 1500 мг/дм 3).

Удельная электропроводность воды

Удельная электропроводность - это численное выражение способности водного раствора проводить электрический ток. Электрическая проводимость природной воды зависит в основном от концентрации растворенных минеральных солей и температуры. Природные воды представляют в основном растворы смесей сильных электролитов. Минеральную часть воды составляют ионы Na + , K + , Ca 2+ , Cl - , SO 4 2- , HCO 3 - . Этими ионами и обуславливается электропроводность природных вод. Присутствие других ионов, например, Fe 3+ , Fe 2+ , Mn 2+ , Al 3+ , NO 3 - , HPO 4 2- , H 2 PO 4 - не сильно влияет на электропроводность, если эти ионы не содержатся в воде в значительных количествах (например, ниже выпусков производственных или хозяйственно-бытовых сточных вод). По значениям электропроводности природной воды можно приближенно судить о минерализации воды с помощью предварительно установленных зависимостей. Затруднения, возникающие при оценке суммарного содержания минеральных веществ (минерализации) по удельной электропроводности связаны с:

  1. неодинаковой удельной электропроводимостью растворов различных солей;
  2. повышением электропроводимости с увеличением температуры.

Нормируемые величины минерализации приблизительно соответствуют удельной электропроводности 2 мСим/см (1000 мг/дм 3) и 3 мСим/см (1500 мг/дм 3) в случае как хлоридной (в пересчете на NaCl), так и карбонатной (в пересчете на CaCO 3) минерализации. Величина удельной электропроводности служит приблизительным показателем их суммарной концентрации электролитов, главным образом, неорганических, и используется в программах наблюдений за состоянием водной среды для оценки минерализации вод. Удельная электропроводность - удобный суммарный индикаторный показатель антропогенного воздействия.

Температура

Температура воды является результатом нескольких одновременно протекающих процессов, таких как солнечная радиация, испарение, теплообмен с атмосферой, перенос тепла течениями, турбулентным перемешиванием вод и др. Годовой и суточный ход температуры воды на поверхности и глубинах определяется количеством тепла, поступающего на поверхность, а также интенсивностью и глубиной перемешивания. Суточные колебания температуры могут составлять несколько градусов и обычно проникают на небольшую глубину. На мелководье амплитуда колебаний температуры воды близка к перепаду температуры воздуха. В требованиях к качеству воды водоемов, используемых для купания, спорта и отдыха, указано, что летняя температура воды в результате спуска сточных вод не должна повышаться более, чем на 3 °С по сравнению со среднемесячной температурой самого жаркого месяца года за последние 10 лет. В водоемах рыбохозяйственного назначения допускается повышение температуры воды в результате спуска сточных вод не больше, чем на 5 °С по сравнению с естественной температурой. Температура воды - важнейший фактор, влияющий на протекающие в водоеме физические, химические, биохимические и биологические процессы, от которого в значительной мере зависят кислородный режим и интенсивность процессов самоочищения. Значения температуры используют для вычисления степени насыщения воды кислородом, различных форм щелочности, состояния карбонатно-кальциевой системы, при многих гидрохимических, гидробиологических, особенно лимнологических исследованиях, при изучении тепловых загрязнений.

Солесодержание или минерализация - это показатель количества содержащихся в воде растворённых веществ, главным образом, неорганических солей. За рубежом минерализацию также называют «общим количеством растворённых частиц» - Total Dissolved Solids (TDS).

Обычно минерализацию подсчитывают в миллиграммах на литр (мг/л), но, учитывая, что единица измерения «литр» не является системной, правильнее минерализацию выражать в мг/дм3, при больших концентрациях - в граммах на литр (г/л, г/дм3). Также уровень минерализации может выражаться в частицах на миллион частиц воды - parts per million (ppm). Соотношение между единицами измерения в мг/л и ppm почти равное и для простоты можно принять, что 1 мг/л = 1 ppm .

В зависимости от общей минерализации воды делятся на следующие виды : слабоминерализованные (1–2 г/л), малой минерализации (2–5 г/л), средней минерализации (5–15 г/л), высокой минерализации (15–30 г/л), рассольные минеральные воды (35–150 г/л), крепкорассольные воды (150 г/л и выше).

Качество питьевой воды регулируется в России рядом СанПин , нормирующих качество водопроводной и бутилированной питьевой воды.

Всемирная организация здравоохранения (ВОЗ) не вводит ограничений на общую минерализацию воды. Но вода при минерализации более 1000–1200 мг/л может менять свой вкус и вызывать тем самым нарекания. Поэтому ВОЗ по органолептическим показаниям рекомендует предел общей минерализации питьевой воды в 1000 мг/л, хотя уровень и может изменяться в зависимости от сложившихся привычек или местных условий .

Кроме бутилированной питьевой воды, которую можно использовать для питья ежедневно, существуют бутылочные минеральные воды делят на три группы: столовые, лечебные и лечебно-столовые .

В соответствии с гигиеническими требованиями к качеству питьевой воды суммарная минерализация не должна превышать величины 1000 мг/дм3. По согласованию с органами Департамента Санэпиднадзора для водопровода, подающего воду без соответствующей обработки (например, из артезианских скважин), допускается увеличение минерализации до 1500 мг/дм3 .

Дистиллированная вода - это вода, которая была максимально очищена от всякого рода примесей (микро- и макроэлементы, соли, посторонние включения) при помощи процесса дистилляции. Также исключается наличие в ее составе тяжелых металлов, вирусов, бактерий. Получается она только при создании определенных условий человеком, в природе ее не существует как таковой, никаких микроорганизмов и полезных минеральных веществ в ней нет. Качество нормируется ГОСТ 6709–72.

Имеется точка зрения, что использование постоянно в питьевых целях воды с низким солесодержанием ведет к «вымываю» из организма солей, в том числе кальция .

Цель работы - определить солесодержания различных видов питьевых вод. Для достижения цели были определены следующие задачи: 1) произвести обзор литературы по теме исследования; 2) произвести замеры солесодержания различных типов вод; 3) сравнить полученные значения солесодержания с нормативными.

Методика проведения исследований

Измерения производили на кондуктометре Мультитест КСЛ-101. Кондуктометр КСЛ-101 предназначен для измерения удельной электрической проводимости жидкостей и общего солесодержания в пересчете на хлористый натрий.

В основу работы кондуктометра заложен контактный метод измерения удельной электрической проводимости жидкостей. Прибор относится к переносным полуавтоматическим широкодиапазонным цифровым измерительным приборам с температурной компенсацией. Выбор диапазона производится автоматически. На индикатор выводится четыре значащие десятичные цифры, дискретность вывода равна единице младшего разряда.

В кондуктометре предусмотрена автоматическая температурная компенсация результатов измерения помощью специального электрода. Внешний вид прибора и электродов представлены на рис. 1.

Определяли солесодержание пяти проб воды.

Рис. 1. Внешний вид кондуктометра Мультитест КСЛ-101 и процесс измерений

Для анализа приобрели в супермаркете воду трех видов: 1) Шадринская лечебно-столовая № 319 (г. Екатеринбург), согласно данным производителя солесодержание от 6 до 9,1 г/л ; Нарзан натуральной газации (г. Кисловодск), согласно данным производителя солесодержание от 2 до 3 г/л . «Люкс вода» (г. Челябинск), согласно данным производителя солесодержание до 400 мг/л .

Кроме того, были произведены анализы водопроводной воды из под крана, для этого воду из холодного крана спускали в течение 15 минут, а затем отбирали в чистую емкость. Также измеряли содержание кипяченой водопроводной воды, поскольку обычно для питья используется водопроводная вода после кипячения.

Измеряли электропроводность дистиллированной, приготовленной в лаборатории химического факультета ЮУрГУ (НИУ) г Челябинск.

Для измерения электроды помещали в стаканчик с водой, нажимали кнопку «Пуск», ждали, когда установится значение в течение 3 минут. Записывали результат высветившийся на табло.

Результаты исследований

Были произведены измерения солесодержания питьевых вод и дистиллированной воды. Результаты измерений представлены в таблице 1. Также в таблице 1 приведены нормативные значения солесодержания (в соответствии с принятыми стандартами либо требования производителя).

Из исследованных вод наименьшим значением солесодержания обладает дистиллированная вода - 3,1 мг/л, что соответствует требованиям ГОСТ 6709–72.

Были исследованы три типа воды, купленной в магазинах г. Челябинска. Наименьшим солесодержанием характеризуется Люкс вода - 120 мг/л, это значение ниже 400 мг/л как устанавливает производитель. Эта вода по солесодержанию относится к столовой и может использоваться в питьевых целях ежедневно.

Воды Шадринская лечебно-столовая № 319 и Нарзан натуральной газации по своему солесодержанию относятся к лечебно-столовым. Но в обоих случаях полученные значения солесодержания были ниже нижнего значения, заявленного производителем. Для воды Шадринской - 3573 мг/л против 6000 мг/л, для Нарзана - 1709 мг/л против 2000 мг/л. Возможно, это связанно тем, что продукция не является оригинальной.

Таблица 1

Результаты измерений

п/п

Наименование воды

Норматив, мг/л

дистиллированная

5 (ГОСТ 6709–72)

водопроводная

Водопроводная кипяченая

Шадринская

Люкс вода

Заключение

В ходе проведения исследований нами измерено солесодержание шести типов воды. Водопроводная вода соответствует требованиям СанПиН 2.1.4.1074–01 по солесодержанию. После кипячения ее солесодержание незначительно снижается. Наименьшим солесодержанием из исследованных питьевых вод, купленных в магазинах города, характеризуется Люкс вода - 120 мг/л. Эта вода по солесодержанию относится к столовой и может использоваться в питьевых целях ежедневно.

Литература:

  1. Таубе П. Р., А. Г. Баранова Химия и микробиология воды. - М. Высш. шк., 1983. - 280 с.
  2. Андруз Дж. Введение в химию окружающей среды / Дж. Андруз, П. Бримблекумб, Т. Джикелз, П. Лисс; Пер. с англ. А. Г. Заварзиной; Под ред. Г. А. Заварзина. - М.: Мир, 1999. - 271 с.
  3. СанПиН 2.1.4.1074–01 Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. Гигиенические требования к обеспечению безопасности систем горячего водоснабжения. - М.: Информационно-издательский центр Минздрава России. - 2002.
  4. http://www.narzanwater.ru/?home=1 Дата обращения 07.09.2015.
  5. Электронный ресурс: http://l-w.ru/poleznoe_o_vode/o_vode/ Дата обращения 07.09.2015.

Общая минерализация - физико-химический показатель воды

Как известно, вода содержит в себе растворимые твердые вещества. Суммарный количественный показатель содержания этих веществ в воде называется общей минерализацией. А потому как растворенные вещества присутствует в воде в виде солей, этот показатель также принято называть общим солесодержанием. Органические вещества содержатся в воде в небольших количествах, в то время как содержание неорганических веществ значительно выше. К неорганическим солям относятся бикарбонаты, сульфаты и хлориды магния, натрия, кальция и калия, а также некоторые другие вещества.

Когда речь заходит об общем солесодержании, часто вспоминается такой параметр, как сухой остаток. Эти понятия близки, но, тем не менее, не тождественны. Разница между этими параметрами заключается, главным образом, в методике их определения. При определении сухого остатка более летучие органические соединения не берутся в расчет. В результате сухой остаток и общая минерализация могут иметь отличие в пределах 10%.

В зависимости от минерализации природные воды разделются на следющие категории:

Но не только качество воды в природных источниках определяет уровень минерализации. Можно отметить и такие факторы, как, например, промышленные сточные воды и городские ливневые стоки.

Всемирная Организация Здравоохранения не устанавливает какие-либо ограничения по содержанию солей в воде по медицинским показателям. Это связано с тем, что не имеется никаких подтверждений того, что повышенный уровень солей в воде может оказывать негативное воздействие на здоровье человека. Тем не менее, принято считать, что вода обладает хорошим вкусом, если уровень солесодержания в ней не превышает 600 мг/л. Если же содержание солей в воде достигает 1000 мг/л или более, вкус такой воды, как правило, не вызывает одобрения со стороны потребителей. Именно поэтому ВОЗ ввел ограничение на уровень минерализации воды по органолептическим показателям. В соответствие с этим, рекомендованный предел солесодержания - 1000 мг/л.

Что же касается низкого уровня содержания солей в воде, то здесь единого мнения не существует. Многие потребители считают, что чем меньше солей содержится в воде, тем выше ее качество. Но также существует мнение, что вода с низким солесодержанием слишком пресная и обладает плохими вкусовыми качествами.

Говоря об общем солесодержании, следует упомянуть и о таком явлении, как отложение осадков и накипи в водонагревательных приборах и паровых котлах. Относительно этого существуют специальные ограничения по уровню минерализации. Они сводятся к тому, что содержание солей в воде должно быть минимальным.

Измена жены