Сверхновые звезды. Наблюдения сверхновых звёзд

> Сверхновая звезда

Узнайте, что такое сверхновая звезда : описание взрыва и вспышки звезды, где рождаются сверхновые, эволюция и развитие, роль двойных звезд, фото и исследования.

Сверхновая – это, по сути, звездный взрыв и наиболее сильный, который можно наблюдать в космическом пространстве.

Где появляются сверхновые звезды?

Очень часто сверхновые можно заметить в других галактиках. Но в нашем Млечном Пути это редкое явление для наблюдения, потому что пылевые и газовые дымки перекрывают обзор. Последняя наблюдаемая сверхновая в была замечена Иоганном Кеплером в 1604 году. Телескоп Чандра смог отыскать лишь остатки от звезды, взорвавшейся больше века назад (последствия взрыва сверхновой).

Что приводит к сверхновой?

Сверхновая звезда рождается, когда в центре звезды происходят изменения. Есть два главных типа.

Первый – в двойных системах. Двойные звезды – объекты, связанные общим центром. Одна из них подворовывает вещество у второй и становится чересчур массивной. Но не способна уравновесить внутренние процессы и взрывается в сверхновой.

Второй – в момент смерти. Топливо имеет свойство заканчиваться. В итоге, часть массы начинает поступать в ядро, и оно становится таким тяжелым, что не выдерживает собственной гравитации. Происходит процесс расширения, и звезда взрывается. Солнце – одиночная звезда, но ей не пережить подобного, так как не хватает массы.

Почему исследователи интересуются сверхновыми звездами?

Сам процесс охватывает небольшой временной промежуток, но может очень многое поведать о Вселенной. Например, один из экземпляров подтвердил свойство Вселенной расширяться и то, что темпы увеличиваются.

Также выяснилось, что эти объекты влияют на момент распределения элементов в пространстве. При взрыве звезда выстреливает элементами и космическими обломками. Многие из них даже попадают на нашу планету. Посмотрите видео, в котором раскрываются особенности сверхновых звезд и их взрывов.

Наблюдения вспышек сверхновых

Астрофизик Сергей Блинников об открытии первой сверхновой звезды, остатках после вспышки и современных телескопах

Как их найти сверхновые звезды?

Для процесса поиска сверхновых звезд исследователи используют различные приборы. Некоторые нужны для наблюдения за видимым светом после взрыва. А другие отслеживают рентгеновские и гамма-лучи. Фото получают при помощи телескопов Хаббл и Чандра.

В июне 2012 года начал работать телескоп, фокусирующий свет в области высоких энергий электромагнитного спектра. Речь идет о миссии NuSTAR, которая ищет разрушившиеся звезды, черные дыры и остатки сверхновых. Ученые планируют узнать побольше о том, как они взрываются и создаются.

Измерение расстояний до небесных тел

Астроном Владимир Сурдин о цефеидах, вспышках сверхновых звезд и скорости расширения Вселенной:

Чем вы можете помочь в исследовании сверхновых звезд?

Для того, чтобы внести свою лепту, вам не нужно становиться ученым. В 2008 году сверхновую нашел обычный подросток. В 2011 году это повторила 10-летняя канадская девочка, рассматривавшая снимок ночного неба на своем компьютере. Очень часто снимки любителей вмещают множество интересных объектов. Немного практики и вы можете найти следующую сверхновую! А если говорить точнее, то у вас есть все шансы запечатлеть взрыв сверхновой звезды.

Как много впечатлений связанно у любителей и профессионалов — исследователей космоса с этими словами. Само слово «новые» несет в себе положительный смысл, а «сверх» -суперположительный, но, к сожалению, обманывает саму суть. Сверхновые скорее можно назвать сверхстарым звездами, потому что это практически последняя стадия развития Звезды. Так сказать яркий эксцентричный апофеоз звездной жизни. Вспышка порой затмевает всю галактику, в которой находиться умирающая звезда, и заканчивается полным ее угасанием.
Ученые выделили 2 типа Сверхновых. Один ласково прозвали взрывом белого карлика (тип I) который по сравнению с нашим солнцем более плотный, и при этом гораздо меньший в радиусе. Маленький, тяжелы Белый карлик – предпоследняя нормальная стадия эволюции многих звезд. В нем уже практически нет водорода в оптическом спектре. И если белый карлик существует в симбиозе двойной системы с другой звездой, он перетягивает ее вещество до тех пор, пока не превышает свой передел. С. Чандресекар в 30-х годах 20 века сказал, что у каждого карлика есть четки предел плотности и массы, превышая который происходит коллапс. Бесконечно сжиматься невозможно и рано или поздно должен случиться взрыв! Второй тип образования сверхновой звезды вызван процессом термоядерного синтеза, который образуя тяжелые металлы, сжимается в себя, от чего начинает повышаться температура в центре звезды. Ядро звезды сжимается все сильней и в нем начинают происходить процессы нейтронизации («терки» протонов и электронов, в ходе которых оба превращаются в нейтроны), что приводит к потере энергии и остыванию центра звезды. Все это провоцирует разряженную атмосферу, и оболочка устремляется к ядру. Взрыв! Мириады маленьких кусочков звезды разлетаются по всему космосу, а яркое свечение из далекой галактики, где миллионы лет назад (количество нулей в годах видимости звезды, зависит от ее удаленности от Земли) взорвалась звезда, видна сегодня ученым планеты Земля. Весточка трагедии прошлого, еще одна оборвавшаяся жизнь, печальная красота, которую иногда мы можем наблюдать веками.

Так, например, Крабовидная туманность, которую можно увидеть в глазок телескопа современных обсерваторий — это последствия взрыва сверхновой, которую видели китайский астрономы в 1054 году. Так интересно осознавать, что то, на что сегодня смотришь ты, почти 1000 лет восхищался человек, уже давным-давно не существующий на Земле. В этом вся таинственность Вселенной, ее медленное тянущееся существование, которое делает нашу жизнь — вспышкой искры костра, она поражает и приводит в некоторый трепет. Ученые выделили несколько наиболее известных взрывов сверхновых звезд, обозначение которых ведется по четкой оговоренной схеме. Латинская SuperNova сократилась до символов SN, затем следует запись года наблюдения и в конце записывается порядковый номер в году. Таким образом, можно увидеть следующие названия известных сверхновых:
Крабовидная туманность – как и говорилось ранее, она является итогом взрыва сверхновой, которая находиться на расстоянии 6500 световых лет от Земли, с диаметром на сегодняшний день 6 000 световых лет. Эта туманность продолжает разлетаться в разные стороны, хотя взрыв произошел чуть менее 1000 лет назад. А в центре ее находить нейтронная звезда-пульсар, который вращается вокруг своей оси. Интересно то, что при большой яркости эта туманность имеет постоянный поток энергии, что позволяет ставить ее ориентиром при калибровке рентгеновской астрономии. Другой находкой стала сверхновая SN1572, как уже видно из названия, вспышку ученые наблюдали в 1572 году в ноябре. По всем признаком это звезда была белым карликом. В 1604 году в течение целого года китайские, корейские, а затем европейские астрологи могли наблюдать взрыв-свечение сверхновой SN1604, которая находиться в созвездии Змееносца. Иоган Кеплер посвятил ее изучению свою основную работу «О новой звезде в созвездии Змееносца» в связи, с чем сверхновая была названа именем ученого – SuperNova Kepler. Самой близкой вспышкой сверхновой стало свечение в 1987 году — SN1987A, находящаяся в Большом Магеллановом Облаке в 50 парсеках от нашего Солнца, карликовой галактике – спутнике Млечного пути. Этот взрыв перевернул некоторые положение уже устоявшейся теории звездной эволюции. Так полагалось, что вспыхивать могут только красные гиганты, а тут, так некстати взял и взорвался голубой! Голубой сверхгигант (масса более 17 масс Солнца) Sanduleak. Очень красивые остатки планеты образуют два необычных соединяющихся кольца, изучением которых сегодня занимаются ученые. Следующая сверхновая поразили ученых в 1993 году — SN1993J, которая до взрыва была красным сверхгигантом. Но удивительно то, что остатки, которые обязаны гаснуть после взрыва, наоборот начали набирать яркость. Почему?

Через несколько лет была обнаружена планета — спутник, которая не пострадала от взрыва сверхновой соседки и создавала условия свечения сорванной незадолго до взрыва оболочки звезды-компаньона (соседки соседками, а с гравитацией не поспоришь…), наблюдаемые учеными. Этой звезде так же пророчиться стать красным гигантом и сверхновой. Взрыв следующей сверхновой в 2006 году (SN206gy) признан самым ярким свечением во всей истории наблюдения за этими явлениями. Это позволило ученым выдвинуть новые теории взрывов сверхновых (такие как кварковые звезды, столкновение двух массивных планет и другие) и назвать этот взрыв — взрывом гиперновой! И последняя интересная сверхновая G1.9+0.3. Первый раз ее сигналы, как радиоисточника Галактики, поймал радиотелескоп VLA. А сегодня ее изучением занимается обсерватория Чандра. Удивительна скорость расширения остатков взорванной звезды, она составляет 15 000 км в час! Что является 5% от скорости света!
Кроме этих самых интересных взрывов сверхновых и их остатков, конечно, существуют и другие «будничные» события космоса. Но факт остается фактом все, что нас сегодня окружает это итог вспышек сверхновых. Ведь в теории в начале существования Вселенная состояла из легких газов гелия и водорода, которые в процессе горения звезд превращались в другие «строительные» элементы для всех существующих ныне планет. Другими словами Звезды отдавали жизнь за рождение новой жизни!

СВЕРХНОВАЯ ЗВЕЗДА

СВЕРХНОВАЯ ЗВЕЗДА , взрыв звезды, при котором практически вся ЗВЕЗДА разрушается. В течение недели сверхновая звезда может затмить все другие звезды Галактики. Светимость сверхновой звезды на 23 звездных величины (в 1000 млн. раз) больше, чем светимость Солнца, а энергия, высвобождаемая при взрыве, равна всей энергии, излученной звездой в течение всей ее предыдущей жизни. Через несколько лет сверхновая увеличивается в объеме настолько, что становится разреженной и полупрозрачной. В течение сотен или тысяч лет остатки выброшенного вещества видны как остатки сверхновой звезды. Сверхновая примерно в 1000 раз ярче НОВОЙ ЗВЕЗДЫ. Каждые 30 лет в такой галактике, как наша, появляется примерно одна сверхновая, однако, большинство этих звезд не видно из-за пыли. Сверхновые звезды бывают двух основных типов, различаемых по их кривым блеска и по спектрам.

Сверхновые - неожиданно вспыхивающие звезды, приобретающие яркость иногда в 10 000 млн. раз большую, чем яркость Солнца. Это происходит в несколько стадий.В начале (А) огромная звезда очень быстро развивается до стадии, когда различные ядерные процессы начинают протекать внутри звезды одновременно. В центре может образоваться железо,что означает конец производства ядерной энергии. Затем звезда начинает подвергаться гравитационному коллапсу (B). Это, однако, нагревает центр звезды до такой степени, что химические элементы распадаются, а новые реакции протекают со взрывной силой (C). Выбрасывается большая часть вещества звезды в космос, в то время как остатки центра звезды коллапсируют, пока звезда не станет полностью темной, возможно пре вратившись в очень плотную нейтронную звезду (D). Одна такая сзерхновая была видна в 1054г. в созвездии Тельца (Е). Остатки этой звезды представляет собой облако газа, называемое Крабовид ной туманностью (F).


Научно-технический энциклопедический словарь .

Смотреть что такое "СВЕРХНОВАЯ ЗВЕЗДА" в других словарях:

    Запрос «Сверхновая» перенаправляется сюда; см. также другие значения. Остаток сверхновой Кеплера Сверхновые звёзды … Википедия

    Взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла. Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что… … Энциклопедия Кольера

    сверхновая звезда - астрон. Внезапно вспыхивающая звезда с мощностью излучения во много тысяч раз превосходящей мощность вспышки новой звезды … Словарь многих выражений

    Сверхновая SN 1572 Остаток сверхновой SN 1572, композиция изображений в рентгеновском и инфракрасном диапазоне, сделанных телескопами «Сптицер», «Чандра» и обсерваторией Калар Альто Наблюдательные данные (Эпоха?) Тип сверхновой … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода … Википедия

    Сверхновая: Сверхновая звезда звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе; Сверхновая российская поп панк группа. Сверхновая (фильм) фантастический хорор фильм 2000 года американского режиссёра… … Википедия

    У этого термина существуют и другие значения, см. Звезда (значения). Плеяды Звезда небесное тело, в котором идут, шли или будут идти … Википедия

    Художественное изображение звезды Вольфа Райе Звёзды Вольфа Райе класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа Райе отличаются от других горячих звёзд наличие … Википедия

    SN 2007on Сверхновая SN 2007on, сфотографированная космическим телескопом Swift. Наблюдательные данные (Эпоха J2000,0) Тип сверхновой Ia … Википедия

Книги

  • Перст судьбы (включая полный обзор неаспектированных планет) , Хамакер-Зондаг К.. Книга известного астролога Карен Хамакер-Зондаг - плод двадцатилетнего труда по изучению загадочных и нередко непредсказуемых скрытых факторов гороскопа: конфигурации "Перст Судьбы",…

Остаток сверхновой Кеплера

Сверхновая звезда или вспышка сверхновой - феномен, в ходе которого резко меняет свою яркость на 4-8 порядков (на десяток звёздных величин) с последующим сравнительно медленным затуханием вспышки. Является результатом катаклизмического процесса, сопровождающегося выделением огромной энергии и возникающего в конце эволюции некоторых звёзд.

Остаток сверхновой RCW 103 c нейтронной звездой 1E 161348-5055 в центре

Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и их излучения достигло . Поэтому их природа довольно долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство, а из оставшейся части вещества взорвавшейся звезды, как правило, образуется компактный объект - нейтронная звезда или чёрная дыра. Вместе они образуют остаток сверхновой.

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.

Помимо прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым в целом и каждая в частности, химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд. Аналогично среди сверхновых сейчас выделяется подкласс - гиперновые.

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Кривые блеска для I типа в высокой степени сходны: 2-3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25-40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин.

А вот кривые блеска типа II достаточны разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе.

Вышеприведенная классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров - основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:
Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещенные эмиссионные компоненты.
Линии , , , наблюдаемые в ультрафиолетовом излучении.

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости.

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Крабовидная туманность (изображение в рентгеновских лучах), хорошо видна внутренняя ударная волна, свободно распространяющийся ветер, а также джет

Каноническая схема молодого остатка следующая:

Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра
Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
Возвратная волна, распространяющаяся в веществе выброса сверхновой.
Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1-20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и т. п указывают на тепловую природу излучения из обоих слоев.

Оптическое излучение молодого остатка создает газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000-9000 км/с и излучают только в линиях O, S, Si - то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100-400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации - прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне.

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и остались звёзды с массой меньше солнечной, не более. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M⊙.

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика - 1M⊙, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывает на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный.

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой прародителем являются короткоживущие O-звезды с массой 8-10M⊙.

Доминирующий сценарий

Один из способов высвободить требуемое количество энергии - резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции - белые карлики. Однако сам по себе последний - устойчивая звезда, все может изменится только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлеченного во взрыв вещества.

Второй компаньон обычная звезда с которого вещество утекает на первый.
Второй компаньон такой же белый карлик. Такой сценарий называет двойным вырождением (англ. Double degeneration).

Взрыв происходит при превышении предела Чандрасекара.
Взрыв происходит до него.

Общим во всех сценариях образования сверхновых сверхновых Ia то, что взрывающийся карлик скорее всего углеродно-кислородный.

Масса вступающего в реакцию вещества определяет энергетику взрыва и соответственно блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 1051 эрг.

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада.

Изотоп 56Ni нестабилен и имеет период полураспада 6.1 дней. Далее e-захват приводит к образованию ядра 56Co преимущественно в возбуждённом состоянии с энергией 1.72 МэВ. Этот уровень нестабилен и переход электрона в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0.163 МэВ до 1.56 МэВ. Эти кванты испытывают комптоновское рассеяние и их энергия быстро уменьшается до ~ 100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и как следствие нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчеты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени,56Ni уже распался и энерговыделение идет за счет β-распада 56Co до 56Fe(T1/2 = 77 дней) с энергиями возбуждения вплоть до 4.2 МэВ.

Модель механизма гравитационного коллапса

Второй сценарий выделения необходимой энергии - это коллапс ядра звезды. Масса его его должна быть в точности равна массе его остатка - нейтронной звезды.

Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой - не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия - процесс нейтронизации.

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение).

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад.

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества.

Заметим, что процессы нейтронизации идут только при плотностях 1011/см3, достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Выделяется три этапа эволюции остатка сверхновой:

Свободный разлет.
Адиабатическое расширение (стадия Седова). Вспышка сверхновой на этой стадии представляется как сильный точечный взрыв в среде с постоянной теплоёмкостью. К этой задаче применимо автомодальное решение Седова, проверенное на ядерных взрывах в земной атмосфере.
Стадия интенсивного высвечивания. Начинается когда температура за фронтом достигает максимума на кривой радиационных потерь.

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками.

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам:

Мгновенная детонация
Отложенная детонация
Пульсирующая отложенная детонация
Турбулентное быстрое горение

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два . Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Взрывы сверхновых – основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или как говорят тяжелее) He. Однако процессы их породившие для различных групп элементов и даже изотопов свои.

Практически все элементы тяжелее He и до Fe – результат классического термоядерного синтеза, проистекающего, например в недрах звёзд или при взрыве сверхновых в ходе p-процесса. Тут стоит оговориться, что крайне малая часть все же была получена в ходе первичного нуклеосинтеза.
Все элементы тяжелее 209Bi – это результат r-процесса
Происхождение же прочих является предметом дискуссии, в качестве возможных механизмов предлагаются s-, r-, ν-, и rp-процессы.

Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M☉, масштаб не соблюдён.

r-проце́сс – это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций и продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β−-распада изотопа.

ν-процесс – это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7Li, 11B, 19F, 138La и 180Ta.

Крабовидная туманность как остаток сверхновой SN 1054

Интерес Гиппарха к неподвижным звёздам, возможно, был вдохновлён наблюдением сверхновой звезды (по Плинию). Наиболее ранняя запись, которая идентифицируется как запись наблюдений сверхновой SN 185, была сделана китайскими астрономами в 185 году нашей эры. Самая яркая известная сверхновая SN 1006 была подробно описана китайскими и арабскими астрономами. Хорошо наблюдалась сверхновая SN 1054, породившая Крабовидную туманность. Сверхновые звезды SN 1572 и SN 1604 были видны невооружённым глазом и имели большое значение в развитии астрономии в Европе, так как были использованы в качестве аргумента против аристотелевской идеи, гласившей, что мир за пределами Луны и Солнечной системы неизменен. Иоганн Кеплер начал наблюдение SN 1604 17 октября 1604 года. Это была вторая сверхновая, которая была зарегистрирована на стадии возрастания блеска (после SN 1572, наблюдавшейся Тихо Браге в созвездии Кассиопеи).

С развитием телескопов сверхновые звёзды стало возможно наблюдать и в других галактиках, начиная с наблюдений сверхновой S Андромеды в Туманности Андромеды в 1885 году. В течение двадцатого столетия были разработаны успешные модели для каждого типа сверхновых и понимание их роли в процессе звездообразования возросло. В 1941 году американскими астрономами Рудольфом Минковским и Фрицем Цвикки была разработана современная схема классификации сверхновых звёзд.

В 1960-х астрономы выяснили, что максимальная светимость взрывов сверхновых может быть использована в качестве стандартной свечи, следовательно, показателя астрономических расстояний. Сейчас сверхновые дают важную информацию о космологических расстояниях. Самые далёкие сверхновые оказались слабее, чем ожидалось, что, по современным представлениям, показывает, что расширение Вселенной ускоряется.

Были разработаны способы для реконструкции истории взрывов сверхновых, которые не имеют письменных записей наблюдений. Дата появления сверхновой Кассиопея A определялась по световому эху от туманности, в то время как возраст остатка сверхновой RX J0852.0-4622 оценивается по измерению температуры и γ-выбросов от распада титана-44. В 2009 году в антарктических льдах были обнаружены нитраты, соответствующие времени взрыва сверхновой.

22 января 2014 года в галактике M82, расположенной в созвездии Большая Медведица, вспыхнула сверхновая звезда SN 2014J. Галактика M82 находится на расстоянии 12 млн световых лет от нашей галактики и имеет видимую звёздную величину чуть менее 9. Данная сверхновая является самой близкой к Земле, начиная с 1987 года (SN 1987A).

Мы уже видели, что, в отличие от Солнца и других стационарных звезд, у физических переменных звезд изменяются размеры, температура фотосферы, светимость. Среди различных видов нестационарных звезд особый интерес представляют новые и сверхновые звезды. На самом деле это не вновь появившиеся звезды, а ранее существовавшие, которые привлекли к себе внимание резким возрастанием блеска.

При вспышках новых звезд блеск возрастает в тысячи и миллионы раз за время от нескольких суток до нескольких месяцев. Известны звезды, которые повторно вспыхивали как новые. Согласно современным данным, новые звезды обычно входят в состав двойных систем, а вспышки одной из звезд происходят в результате обмена веществом между звездами, образующими двойную систему. Например, в системе “белый карлик – обычная звезда (малой светимости)” взрывы, вызывающие явление новой звезды, могут возникать при падении газа с обычной звезды на белый карлик.

Еще более грандиозны вспышки сверхновых звезд, блеск которых внезапно возрастает примерно на 19 m ! В максимуме блеска излучающая поверхность звезды приближается к наблюдателю со скоростью в несколько тысяч километров в секунду. Картина вспышки сверхновых звезд свидетельствует о том, что сверхновые – это взрывающиеся звезды.

При взрывах сверхновых в течение нескольких суток выделяется огромная энергия – порядка 10 41 Дж. Такие колоссальные взрывы происходят на заключительных этапах эволюции звезд, масса которых в несколько раз больше массы Солнца.

В максимуме блеска одна сверхновая звезда может светить ярче миллиарда звезд, подобных нашему Солнцу. При наиболее мощных взрывах некоторых сверхновых звезд может выбрасываться вещество со скоростью 5000 – 7000 км/с, масса которого достигает нескольких солнечных масс. Остатки оболочек, сброшенных сверхновыми звездами, видны долгое время как расширяющиеся газовые .

Обнаружены не только остатки оболочек сверхновых звезд, но и то, что осталось от центральной части некогда взорвавшейся звезды. Такими “звездными остатками” оказались удивительные источники радиоизлучения, которые получили названия пульсаров. Первые пульсары были открыты в 1967 г.

У некоторых пульсаров поразительно стабильна частота повторения импульсов радиоизлучения: импульсы повторяются через строго одинаковые промежутки времени, измеренные с точностью, превышающей 10 -9 с! Открытые пульсары находятся от нас на расстояниях, не превышающих сотни парсек. Предполагается, что пульсары – это быстровращающиеся сверхплотные звезды, радиусы которых около 10 км, а массы близки к массе Солнца. Такие звезды состоят из плотно упакованных нейтронов и называются нейтронными. Лишь часть времени своего существования нейтронные звезды проявляют себя как пульсары.

Вспышки сверхновых звезд относятся к редким явлениям. За последнее тысячелетие в нашей звездной системе наблюдалось всего лишь несколько вспышек сверхновых. Из них наиболее достоверно установлены следующие три: вспышка 1054 г. в созвездии Тельца, в 1572 г. – в созвездии Кассиопеи, в 1604 г. – в созвездии Змееносца. Первая из этих сверхновых описана как “звезда-гостья” китайскими и японскими астрономами, вторая – Тихо Браге, а третью наблюдал Иоганн Кеплер. Блеск сверхновых 1054 г. и 1572 г. превосходил блеск Венеры, и эти звезды были видны днем. Со времени изобретения телескопа (1609 г.) в нашей звездной системе не наблюдалось ни одной сверхновой звезды (возможно, что некоторые вспышки остались незамеченными). Когда же появилась возможность исследовать другие звездные системы, в них стали часто открывать новые и сверхновые звезды.

23 февраля 1987 г. сверхновая звезда вспыхнула в Большом Магеллановом Облаке (созвездие Золотой Рыбы) – самом большом спутнике нашей Галактики. Впервые после 1604 г. сверхновую звезду можно было видеть даже невооруженным глазом. До вспышки на месте сверхновой находилась звезда 12-й звездной величины. Максимального блеска 4 m звезда достигла в начале марта, а затем стала медленно угасать. Ученым, наблюдавшим сверхновую с помощью телескопов крупнейших наземных обсерваторий, орбитальной обсерватории “Астрон” и рентгеновских телескопов на модуле “Квант” орбитальной станции “Мир”, удалось впервые проследить весь процесс вспышки. Наблюдения проводились в разных диапазонах спектра, включая видимый оптический диапазон, ультрафиолетовый, рентгеновский и радиодиапазоны. В научной печати появлялись сенсационные сообщения о регистрации нейтринного и, возможно, гравитационного излучения от взорвавшейся звезды. Были уточнены и обогащены новыми результатами модели строения звезды в фазе, предшествующей взрыву.

Бывшие